Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: How does soil store CO2?

08.01.2014
Carbon content in soil influences climate models

Global carbon dioxide (CO2) emissions continue to rise – in 2012 alone, 35.7 billion tons of this greenhouse gas entered the atmosphere*. Some of this CO2 is absorbed by the oceans, plants and soil. As such, they provide a significant reservoir of carbon, stemming the release of CO2.


Carbon tends to bind to specific rough mineral surfaces in the soil (yellow areas). (Image: C. Vogel/TUM)


New organic carbon mostly accumulates on existing hot spots. Left: Mineral surfaces with all accumulations of carbon (yellow). Right: Mineral surfaces with new organic substance (green and magenta). (Image: C. Vogel/TUM)

Scientists have now discovered how organic carbon is stored in soil. Basically, the carbon only binds to certain soil structures. This means that soil’s capacity to absorb CO2 needs to be re-assessed and incorporated into today’s climate models.

Previous studies have established that carbon binds to tiny mineral particles. In this latest study, published in Nature Communications, researchers of the Technische Universität München (TUM) and the Helmholtz Zentrum München have shown that the surface of the minerals plays just as important a role as their size. “The carbon binds to minerals that are just a few thousandths of a millimeter in size – and it accumulates there almost exclusively on rough and angular surfaces,” explains Prof. Ingrid Kögel-Knabner, TUM Chair of Soil Science.

The role of microorganisms in sequestering carbon

It is presumed that the rough mineral surfaces provide an attractive habitat for microbes. These convert the carbon and play a part in binding it to minerals. “We discovered veritable hot spots with a high proportion of carbon in the soil,” relates Cordula Vogel, the lead author of the study. “Furthermore, new carbon binds to areas which already have a high carbon content.”

These carbon hot spots are, however, only found on around 20 percent of the mineral surfaces. It was previously assumed that carbon is evenly distributed in the soil. “Thanks to our study, we can now pin-point the soil that is especially good for sequestering CO2,” continues Kögel-Knabner. “The next step is to include these findings in carbon cycle models.”

Mass spectrometer helps to visualize molecules

The sample material used by the team was loess, a fertile agricultural soil found in all parts of the world – which makes it a very important carbon store. The researchers were able to take ultra-precise measurements using the NanoSIMS mass spectrometer. This procedure allowed them to view and compare even the most minute soil structures.

*Source: Global Carbon Atlas

Publication:
Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils, Cordula Vogel, Carsten W. Müller, Carmen Höschen, Franz Buegger, Katja Heister, Stefanie Schulz, Michael Schloter & Ingrid Kögel-Knabner, Nature Communications, DOI: 10.1038/ncomms3947.
Contact:
Prof. Dr. Ingrid Kögel-Knabner
Technische Universität München
Chair of Soil Science
Tel: +49 8161 71-3677
koegel@wzw.tum.de

Barbara Wankerl | EurekAlert!
Further information:
http://www.soil-science.com/
http://www.tum.de

Further reports about: CO2 Climate change Nature Immunology Soil Soil Science TUM hot spots soil structure

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>