Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change puts forty percent more people at risk of absolute water scarcity

17.12.2013
Water scarcity impacts people’s lives in many countries already today. Future population growth will increase the demand for freshwater even further.

Yet in addition to this, on the supply side, water resources will be affected by projected changes in rainfall and evaporation. Climate change due to unabated greenhouse-gas emissions within our century is likely to put 40 percent more people at risk of absolute water scarcity than would be without climate change, a new study shows by using an unprecedented number of impact models.

The analysis is to be published in a special issue of the Proceedings of the National Academy of Sciences that assembles first results of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), a unique community-driven effort to bring research on climate change impacts to a new level.

“The steepest increase of global water scarcity might happen between 2 and 3 degrees global warming above pre-industrial levels, and this is something to be experienced within the next few decades unless emissions get cut soon,” says lead-author Jacob Schewe of the Potsdam Institute for Climate Impact Research. “It is well-known that water scarcity increases, but our study is the first to quantify the relative share that climate change has in that, compared to – and adding to – the increase that is simply due to population growth.”

Today, between one and two people out of a hundred live in countries with absolute water scarcity. Population growth and climate change combined would increase this to about ten in a hundred at roughly 3 degrees global warming. Absolute water scarcity is defined as less than 500 cubic meters available per year and person – a level requiring extremely efficient water use techniques and management in order to be sufficient, which in many countries are not in place. For a comparison, the global average water consumption per person and year is roughly 1200 cubic meters, and significantly more in many industrialized countries.

As climate change is not uniform across the world, the regional differences of its impacts on water availability are huge. For example, the Mediterranean, Middle East, the southern USA, and southern China will very probably see a pronounced decrease of available water, according to the study. Southern India, western China and parts of Eastern Africa might see substantial increases.

“Water scarcity is a major threat for human development, as for instance food security in many regions depends on irrigation – agriculture is the main water user worldwide,” says co-author Qiuhong Tang of the Chinese Academy of Sciences. “Still, an increase of precipitation is also challenging – the additional water may cause water logging, flooding, and malfunctioning or failure of water-related infrastructure. So the overall risks are growing.” Moreover, many industrial production processes require large amounts of water, so a lack thereof in some regions hampers economical development.

This study is based on a comprehensive set of eleven global hydrological models, forced by five global climate models – a simulation ensemble of unprecedented size which was produced in collaboration by many research groups from around the world. Hence, the findings synthesize the current knowledge about climate change impacts on water availability. The cooperative ISI-MIP process systematically compares the results of the various computer simulations to see where they agree and where they don’t. The results quoted above represent the multi-model average. So some of the models indicated even greater increases of water scarcity.

“The multi-model assessment is unique in that it gives us a good measure of uncertainties in future impacts of climate change – which in turn allows us to understand which findings are most robust,” says co-author Pavel Kabat of the International Institute for Applied Systems Analysis (IIASA). “From a risk management perspective, it becomes very clear that, if human-made climate change continues, we are putting at risk the very basis of life for millions of people, even according to the more optimistic scenarios and models.”

However, he added, the job is far from being done. “We need to do additional research on how the water requirement portfolio will develop in the future in different sectors like agriculture, industry, and energy – and how, in addition to reducing greenhouse-gas emissions, the technological developments in the water sector may help alleviating water scarcity.”

Article: Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N.W., Clarke, D.B., Dankers, R., Eisner, S., Fekete, B.M., Colón-González, F.J., Gosling, S.M., Kim, H., Liu, X., Masaki, Y., Portmann, F.T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., Kabat, P. (2013): Multi-model assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences (early online edition) [DOI:10.1073/pnas.1222460110]

Along with this article, further ISI-MIP results are published online by PNAS:

Dankers, R., et al. (2013): First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proceedings of the National Academy of Sciences (early online edition)

Elliott, J., et al (2013): Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences (early online edition)

Friend, A. D., et al. (2013): Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Sciences (early online edition)

Haddeland I., et al. (2013): Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences (early online edition)

Nelson, G. C., et al. (2013): Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences (early online edition)

Piontek, F., et al. (2013): Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences (early online edition) [DOI:10.1073/pnas.1222471110]

Prudhomme, C., et al. (2013): Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences (early online edition)

Rosenzweig, C., et al. (2013): Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences (early online edition)

Schellnhuber, H.J., et al (2013): The Elephant, the Blind, and the ISI-MIP. Proceedings of the National Academy of Sciences (early online edition)

Warszawski, L., et al. (2013): The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences (early online edition)

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.1222460110

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>