Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change may worsen summertime ozone pollution

09.05.2014

Americans face 70 percent increase in unhealthy ozone levels by 2050

Ozone pollution across the continental United States will become far more difficult to keep in check as temperatures rise, according to new research results.


Ozone pollution across the continental U.S. will become worse as global temperatures rise.

Credit: Kansas City Area Transportation Authority

The study shows that Americans face the risk of a 70 percent increase in unhealthy summertime ozone levels by 2050.

The results appear online this week in a paper in the Journal of Geophysical Research-Atmospheres, published by the American Geophysical Union.

... more about:
»Climate »Earth »Geophysical »NCAR »NSF »Regional »atmosphere »rise

The work was funded by the National Science Foundation (NSF) and the U.S. Department of Energy.

Warmer temperatures and other changes in the atmosphere related to a changing climate, including higher atmospheric levels of methane, spur chemical reactions that increase overall levels of ozone.

Unlike ozone in the stratosphere, which benefits life on Earth by blocking ultraviolet radiation from the sun, ground-level ozone can trigger a number of health problems.

These range from coughing and throat irritation to more serious aggravation of asthma, bronchitis and emphysema.

Even short periods of unhealthy ozone levels can cause local death rates to rise. Ozone pollution also damages crops and other plants.

Unless emissions of specific pollutants associated with the formation of ozone are sharply cut, most of the continental United States will experience more summer days with unhealthy air by 2050, the research shows.

Heavily polluted locations in parts of the East, Midwest and West Coast, in which ozone already frequently exceeds recommended levels, could face unhealthy summer air in most years.

"It doesn't matter where you are in the United States, climate change has the potential to make your air worse," said National Center for Atmospheric Research (NCAR) scientist Gabriele Pfister, lead scientist on the study.

In addition to NCAR, the paper co-authors are from the Pacific Northwest National Laboratory; University of Colorado, Boulder; and North-West University in South Africa.

"A warming planet doesn't just mean rising temperatures, it also means risking more summertime pollution and the health effects that come with it," said Pfister.

However, the research also showed that a sharp reduction in the emissions of certain pollutants would lead to dramatically decreased levels of ozone even as temperatures warm.

The research is one of the first of its type to be conducted with new, highly advanced geoscience supercomputing capabilities.

"Understanding future changes in surface ozone over the summer has tremendous implications for air quality and human health," said Anjuli Bamzai, a program director in NSF's Division of Atmospheric and Geospace Sciences, which funded the research through NSF's Decadal and Regional Climate Prediction using Earth System Models (EaSM) Program.

"Through a series of 'what if' simulations," said Bamzai, "atmospheric chemists, climate modelers, regional modelers and developers of emissions scenarios demonstrate that a balance of emission controls can counteract the increases in future temperatures, emissions and solar radiation that in turn lead to decreases in surface ozone."

Ozone and heat

Ozone pollution is not emitted directly. It forms as a result of chemical reactions that take place between nitrogen oxides and volatile organic compounds in the presence of sunlight.

These gases come from human activities such as combustion of coal and oil, as well as natural sources such as emissions from plants.

To examine the effects of climate change on ozone pollution, Pfister and colleagues looked at two scenarios.

In one, emissions of nitrogen oxides and volatile organic compounds from human activities would continue at current levels through 2050.

In the other, emissions would be cut by 60-70 percent. Both scenarios assumed continued greenhouse gas emissions with significant warming.

The researchers found that, if emissions continue at present-day rates, the number of eight-hour periods in which ozone would exceed 75 parts per billion (ppb) would jump by 70 percent on average across the United States by 2050.

The 75 ppb level over eight hours is the threshold that is considered unhealthy by the U.S. Environmental Protection Agency. (The agency is considering tightening the standard to a value between 65 and 70 ppb over eight hours.)

Overall, the study found that, 90 percent of the time, ozone levels would range from 30 to 87 ppb in 2050 compared with an estimated 31 to 79 ppb at present.

Although the range itself shifts only slightly, the result is a much larger number of days above the threshold considered unhealthy.

There are three primary reasons for the increase in ozone with climate change:

  • Chemical reactions in the atmosphere that produce ozone occur more rapidly at higher temperatures.
  • Plants emit more volatile organic compounds at higher temperatures, which can increase ozone formation if mixed with pollutants from human sources.
  • Methane, which is increasing in the atmosphere, contributes to increased ozone globally and will enhance baseline levels of surface ozone across the United States.

In the second scenario, Pfister and colleagues found that sharp reductions in nitrogen oxides and volatile organic compounds could reduce ozone pollution even as the climate warms.

In fact, 90 percent of the time, ozone levels would range from 27 to 55 ppb.

The number of instances when ozone pollution would exceed the 75 ppb level dropped to less than 1 percent of current cases.

"Our work confirms that reducing emissions of ozone precursors would have an enormous effect on the air we all breathe," Pfister said.

Pfister and a nationwide scientific team expect to learn more about the sources, chemistry and movement of air pollutants this summer when they launch a major field experiment known as FRAPPÉ along Colorado's Front Range.

The role of supercomputing

The study was among the first conducted on the new 1.5 petaflops Yellowstone supercomputer. The IBM system, operated by NCAR and supported by funding from NSF and the University of Wyoming, is one of the world's most powerful computers dedicated to research in the atmospheric and related sciences.

"High resolution models can consume significant time and resources on massive computers, but as shown in this research, they're often required for accurate regional ozone projections," said Irene Qualters, division director for Advanced Computing Infrastructure at NSF.

"Running these models wouldn't have been possible without the parallel processing power of the Yellowstone supercomputer, a critical part of NSF's cyberinfrastructure.

"The work will also help other researchers in related climate topics determine scenarios where coarse resolution is sufficient and, conversely, where high resolution is needed."

Thanks to its computing power, the scientists were able to simulate pollution levels hour-by-hour for 39 hypothetical summers.

This allowed the team to account for year-to-year variations in meteorological conditions, such as hot and dry vs. cool and wet, thereby getting a more detailed and statistically significant picture of future pollution levels.

To simulate the interplay of global climate with regional pollution conditions, the scientists turned to two of the world's leading atmospheric models, both based at NCAR and developed through collaborations in the atmospheric sciences community.

They used the Community Earth System Model, funded primarily by the U.S. Department of Energy and NSF, to simulate global climate as well as atmospheric chemistry conditions.

They also used an air chemistry version of the multiagency Weather Research and Forecasting Model to obtain a more detailed picture of regional ozone levels.

Even with Yellowstone's advanced computing speed, it took months to complete the complex simulations.

"This research would not have been possible even just a couple of years ago," said Pfister.

"Without the new computing power made possible by Yellowstone, you cannot depict the necessary detail of future changes in air chemistry over small areas, including the urban centers where most Americans live."

-NSF-

Media Contacts
Cheryl Dybas, NSF-GEO, (703) 292-7734, cdybas@nsf.gov
Aaron Dubrow, NSF-CISE, (703) 292-4489, adubrow@nsf.gov
David Hosansky, NCAR, (303) 497-8611, hosansky@ucar.edu
Nanci Bompey, AGU, (202) 777-7524, nbompey@agu.org

Related Websites
NSF Grant: Collaborative Research: Developing a Next-Generation Approach to Regional Climate Prediction at High Resolution: http://www.nsf.gov/awardsearch/showAward?AWD_ID=1048829&HistoricalAwards=false

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!

Further reports about: Climate Earth Geophysical NCAR NSF Regional atmosphere rise

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>