Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change May Lead to Fewer -- But More Violent -- Thunderstorms

11.07.2012
Number of flash floods and forest fires could increase with temperature, says TAU researcher
Researchers are working to identify exactly how a changing climate will impact specific elements of weather, such as clouds, rainfall, and lightning. A Tel Aviv University researcher has predicted that for every one degree Celsius of warming, there will be approximately a 10 percent increase in lightning activity.

This could have negative consequences in the form of flash floods, wild fires, or damage to power lines and other infrastructure, says Prof. Colin Price, Head of the Department of Geophysics, Atmospheric and Planetary Sciences at Tel Aviv University. In an ongoing project to determine the impact of climate change on the world's lightning and thunderstorm patterns, he and his colleagues have run computer climate models and studied real-life examples of climate change, such as the El Nino cycle in Indonesia and Southeast Asia, to determine how changing weather conditions impact storms.

An increase in lightning activity will have particular impact in areas that become warmer and drier as global warming progresses, including the Mediterranean and the Southern United States, according to the 2007 United Nations report on climate change. This research has been reported in the Journal of Geophysical Research and Atmospheric Research, and has been presented at the International Conference on Lightning Protection.

From the computer screen to the real world

When running their state-of-the-art computer models, Prof. Price and his fellow researchers assess climate conditions in a variety of real environments. First, the models are run with current atmospheric conditions to see how accurately they are able to depict the frequency and severity of thunderstorms and lightning in today's environment. Then, the researchers input changes to the model atmosphere, including the amount of carbon dioxide in the atmosphere (a major cause of global warming) to see how storms are impacted.

To test the lightning activity findings, Prof. Price compared their results with vastly differing real-world climates, such as dry Africa and the wet Amazon, and regions where climate change occurs naturally, such as Indonesia and Southeast Asia, where El Nino causes the air to become warmer and drier. The El Nino phenomenon is an optimal tool for measuring the impact of climate change on storms because the climate oscillates radically between years, while everything else in the environment remains constant.

"During El Nino years, which occur in the Pacific Ocean or Basin, Southeast Asia gets warmer and drier. There are fewer thunderstorms, but we found fifty percent more lightning activity," says Prof. Price. Typically, he says,we would expect drier conditions to produce less lightning. However, researchers also found that while there were fewer thunderstorms, the ones that did occur were more intense.

Fire and flood warning

An increase in lightning and intense thunderstorms can have severe implications for the environment, says Prof. Price. More frequent and intense wildfires could result in parts of the US, such as the Rockies, in which many fires are started by lightning. A drier environment could also lead fires to spread more widely and quickly, making them more devastating than ever before. These fires would also release far more smoke into the air than before.

Researchers predict fewer but more intense rainstorms in other regions, a change that could result in flash-flooding, says Prof. Price. In Italy and Spain, heavier storms are already causing increased run-off to rivers and the sea, and a lack of water being retained in groundwater and lakes. The same is true in the Middle East, where small periods of intense rain are threatening already scarce water resources.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>