Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change May Lead to Fewer -- But More Violent -- Thunderstorms

11.07.2012
Number of flash floods and forest fires could increase with temperature, says TAU researcher
Researchers are working to identify exactly how a changing climate will impact specific elements of weather, such as clouds, rainfall, and lightning. A Tel Aviv University researcher has predicted that for every one degree Celsius of warming, there will be approximately a 10 percent increase in lightning activity.

This could have negative consequences in the form of flash floods, wild fires, or damage to power lines and other infrastructure, says Prof. Colin Price, Head of the Department of Geophysics, Atmospheric and Planetary Sciences at Tel Aviv University. In an ongoing project to determine the impact of climate change on the world's lightning and thunderstorm patterns, he and his colleagues have run computer climate models and studied real-life examples of climate change, such as the El Nino cycle in Indonesia and Southeast Asia, to determine how changing weather conditions impact storms.

An increase in lightning activity will have particular impact in areas that become warmer and drier as global warming progresses, including the Mediterranean and the Southern United States, according to the 2007 United Nations report on climate change. This research has been reported in the Journal of Geophysical Research and Atmospheric Research, and has been presented at the International Conference on Lightning Protection.

From the computer screen to the real world

When running their state-of-the-art computer models, Prof. Price and his fellow researchers assess climate conditions in a variety of real environments. First, the models are run with current atmospheric conditions to see how accurately they are able to depict the frequency and severity of thunderstorms and lightning in today's environment. Then, the researchers input changes to the model atmosphere, including the amount of carbon dioxide in the atmosphere (a major cause of global warming) to see how storms are impacted.

To test the lightning activity findings, Prof. Price compared their results with vastly differing real-world climates, such as dry Africa and the wet Amazon, and regions where climate change occurs naturally, such as Indonesia and Southeast Asia, where El Nino causes the air to become warmer and drier. The El Nino phenomenon is an optimal tool for measuring the impact of climate change on storms because the climate oscillates radically between years, while everything else in the environment remains constant.

"During El Nino years, which occur in the Pacific Ocean or Basin, Southeast Asia gets warmer and drier. There are fewer thunderstorms, but we found fifty percent more lightning activity," says Prof. Price. Typically, he says,we would expect drier conditions to produce less lightning. However, researchers also found that while there were fewer thunderstorms, the ones that did occur were more intense.

Fire and flood warning

An increase in lightning and intense thunderstorms can have severe implications for the environment, says Prof. Price. More frequent and intense wildfires could result in parts of the US, such as the Rockies, in which many fires are started by lightning. A drier environment could also lead fires to spread more widely and quickly, making them more devastating than ever before. These fires would also release far more smoke into the air than before.

Researchers predict fewer but more intense rainstorms in other regions, a change that could result in flash-flooding, says Prof. Price. In Italy and Spain, heavier storms are already causing increased run-off to rivers and the sea, and a lack of water being retained in groundwater and lakes. The same is true in the Middle East, where small periods of intense rain are threatening already scarce water resources.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>