Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change May Lead to Fewer -- But More Violent -- Thunderstorms

11.07.2012
Number of flash floods and forest fires could increase with temperature, says TAU researcher
Researchers are working to identify exactly how a changing climate will impact specific elements of weather, such as clouds, rainfall, and lightning. A Tel Aviv University researcher has predicted that for every one degree Celsius of warming, there will be approximately a 10 percent increase in lightning activity.

This could have negative consequences in the form of flash floods, wild fires, or damage to power lines and other infrastructure, says Prof. Colin Price, Head of the Department of Geophysics, Atmospheric and Planetary Sciences at Tel Aviv University. In an ongoing project to determine the impact of climate change on the world's lightning and thunderstorm patterns, he and his colleagues have run computer climate models and studied real-life examples of climate change, such as the El Nino cycle in Indonesia and Southeast Asia, to determine how changing weather conditions impact storms.

An increase in lightning activity will have particular impact in areas that become warmer and drier as global warming progresses, including the Mediterranean and the Southern United States, according to the 2007 United Nations report on climate change. This research has been reported in the Journal of Geophysical Research and Atmospheric Research, and has been presented at the International Conference on Lightning Protection.

From the computer screen to the real world

When running their state-of-the-art computer models, Prof. Price and his fellow researchers assess climate conditions in a variety of real environments. First, the models are run with current atmospheric conditions to see how accurately they are able to depict the frequency and severity of thunderstorms and lightning in today's environment. Then, the researchers input changes to the model atmosphere, including the amount of carbon dioxide in the atmosphere (a major cause of global warming) to see how storms are impacted.

To test the lightning activity findings, Prof. Price compared their results with vastly differing real-world climates, such as dry Africa and the wet Amazon, and regions where climate change occurs naturally, such as Indonesia and Southeast Asia, where El Nino causes the air to become warmer and drier. The El Nino phenomenon is an optimal tool for measuring the impact of climate change on storms because the climate oscillates radically between years, while everything else in the environment remains constant.

"During El Nino years, which occur in the Pacific Ocean or Basin, Southeast Asia gets warmer and drier. There are fewer thunderstorms, but we found fifty percent more lightning activity," says Prof. Price. Typically, he says,we would expect drier conditions to produce less lightning. However, researchers also found that while there were fewer thunderstorms, the ones that did occur were more intense.

Fire and flood warning

An increase in lightning and intense thunderstorms can have severe implications for the environment, says Prof. Price. More frequent and intense wildfires could result in parts of the US, such as the Rockies, in which many fires are started by lightning. A drier environment could also lead fires to spread more widely and quickly, making them more devastating than ever before. These fires would also release far more smoke into the air than before.

Researchers predict fewer but more intense rainstorms in other regions, a change that could result in flash-flooding, says Prof. Price. In Italy and Spain, heavier storms are already causing increased run-off to rivers and the sea, and a lack of water being retained in groundwater and lakes. The same is true in the Middle East, where small periods of intense rain are threatening already scarce water resources.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>