Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change in Antarctica: Natural temperature variability underestimated


Cold spell superimposes man-made warming

The Antarctic ice sheet is one of the tipping elements in the climate system and hence of vital importance for our planet’s future under man-made climate change. Even a partial melting of the enormous ice masses of Antarctica would raise sea-levels substantially.

Therefore it is of utmost importance to provide sound knowledge on the extent of anthropogenic warming of the ice-covered continent. A new analysis by German physicists shows that the uncertainties in the temperature trends over Antarctica are larger than previously estimated.

“So far it seemed there were hardly any major natural temperature fluctuations in Antarctica, so almost every rise in temperature was attributed to human influence,” says Armin Bunde of Justus-Liebig-Universität Gießen (JLU).

“Global warming as a result of our greenhouse gas emissions from burning fossil fuels is a fact. However, the human influence on the warming of West Antarctica is much smaller than previously thought. The warming of East Antarctica up to now can even be explained by natural variability alone.” The results of their study are now published in the journal Climate Dynamics.

The melting of Antarctic ice shelves is not only influenced by warming air but also by warming oceans, causing ice loss at the coast. However, as there are no sufficient long-term records for Antarctic ocean warming yet, the study focuses on air temperature trends.

In collaboration with Hans Joachim Schellnhuber of the Potsdam Institute for Climate Impact Research and Christian Franzke of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP) of Hamburg University, the physicists of JLU Armin Bunde and Josef Luderer were able to show that there are major and very persistent temperature fluctuations in Antarctica.

“The climate in Antarctica, just like the global climate, tends to be distinctly persistent by nature – it remains in certain temperature ranges for a long time before it changes. This creates a temporal temperature structure of highs and lows,” explains Christian Franzke.

“A low, i.e. a longer cold period, will be followed by a longer warm period, and this natural warming has to be differentiated from the superimposed anthropogenic warming,” adds Armin Bunde. The scientists did not only analyze data from individual measuring stations but also generated regional averages. The results show a human influence on the warming of West Antarctica, while this influence is weaker than previously thought. However, the warming of Antarctica altogether will likely increase more strongly soon.

For several years temperatures in Antarctica, but also globally, have been increasing less rapidly than in the 1990s. There are a number of reasons for this, e.g. the oceans buffering warmth. The study now published by the German team of scientists shows that man-made global warming has not been pausing - it was temporarily superimposed and therefore hidden by long-term natural climate fluctuations like in Antarctica.

“Our estimates show that we are currently facing a natural cooling period – while temperatures nonetheless rise slowly but inexorably, due to our heating up the atmosphere by emitting greenhouse gas emissions,” explains Hans Joachim Schellnhuber. “At the end of this natural cold spell temperatures will rise even more fiercely. Globally, but also in Antarctica which therefore is in danger of tipping.” In fact, in March 2015 two Antarctic measuring stations registered high-temperature records.

Article: Ludescher, J., Bunde, A., Franzke, C., Schellnhuber, H.J. (2015): Long-term persistence enhances uncertainty about anthropogenic warming of West Antarctica. Climate Dynamics. [DOI: 10.1007/s00382-015-2582-5]

Link to the article:

For further information please contact:
PIK press office
Jonas Viering, Sarah Messina
Phone: +49 331 288 2507
Twitter: @PIK_Climate

Prof. Dr. Armin Bunde
Institut für Theoretische Physik der Justus-Liebig-Universität Gießen (JLU)
Phone: +49 641 99-33375
Mobile: +49 157 33 14 55 55

Caroline Kieke, Public Relations
Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP)
of Hamburg University
Phone: +49 (0) 40 42838 2134

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>