Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: Diseqilibrium will become the norm in the plant communities of the future

01.07.2013
Global climate change will induce large changes to the plant communities on Earth

The forest we are used to looking at is not at all in equilibrium. Since the Ice Age, a number of plants have been 'missing' in Northern Europe, i.e. species that have not yet arrived.


Heartleaf Oxeye is an example of a species that has not yet returned to Northern Europe since the last Ice Age, but which we have helped along by planting in our gardens. Here it was found in the Danish countryside.

Credit: Photo: Jens-Christian Svenning, Aarhus University

The same applies in many other parts of the world. Similarly, there is evidence that -- even today -- it often takes a very long time before plants follow when glaciers retreat, or the climate changes. In future, such disequilibrium will become the norm in the plant communities on Earth. This has been demonstrated by a new synthesis carried out by two researchers at Aarhus University -- Professor of Biology Jens-Christian Svenning and Assistant Professor Brody Sandel.

Professor Svenning explains: "In the climate debate, even researchers have had a tendency to overlook the fact that ecological dynamics can be slow. However, our forests take an extremely long time to adapt. For example, we still have a small amount of small-leaved lime in Denmark, which has held on since the warm period during the Bronze Age, i.e. about 3000 years. Perhaps it will now get another chance to spread when the summers once more get warmer. However, such expansion would take a long time, as lime is not a particularly fast-growing tree or particularly good at dispersing, even under optimum conditions. The climate will change considerably in the course of a single tree generation so we should not assume that the forest we're looking at in a given place is suitable for the climate. Future climate will constantly shift, which will increasingly result in these strange situations of disequilibrium."

Even fast spreaders such as some invasive exotic plants remain in disequilibrium for decades or centuries. Shown here is a Norway maple, a highly invasive tree species in North America that may nevertheless still take many decades to spread across even small landscapes.

Photo: Lennarth Skov Espersen, http://www.fotoinaturen.dk.

The challenges we face

"Consequently, if you're trying to practise natural forest management with natural regeneration, you may see completely different plants regenerating compared with what you had before, because the climate has shifted to become suitable for another set of species. This also makes it challenging to adhere to a management plan granting preservation status to a particular type of nature at a certain site. At such a site, the existence of a large number of fully grown specimens of an endangered species is no guarantee that there will be a next generation.

This would be challenging for everyone -- for the managers, for the people who use the countryside in one way or another, and also for the researchers who are used to working with ecosystems that are much more balanced. Plant life and ecosystems will become much more dynamic and often out of sync with the climate.

We're causing so many changes to the climate, but at the same time nature is SO slow. Just think of a tree generation. Our entire culture is based on something that was, if not in complete equilibrium, then at least relatively predictable. We're used to a situation where flora, fauna and climate are reasonably well matched. In future, this equilibrium will shift on an ongoing basis, and there will be plenty of mismatches. That's what we'll have to work with."

Professor Svenning also calls for caution: "With nature in such a state of disequilibrium, human introduction of new species will play a key role. Take cherry laurel, for example, which we see in many gardens in Denmark. It's ready to spread throughout the Danish countryside. If it were to migrate unaided from its nearest native site in South-East Europe to Denmark, it would take thousands of years. Horticulturists now help it along. This will help the species survive, but can also cause northern species in Denmark to become extinct more rapidly. The cherry laurel is an evergreen, and if it disperses on the forest floor, it may create too much shade for the existing flora on the forest floor to survive. At the same time, the disequilibrium presents the advantage that such dispersal will take decades despite the contribution of horticulturists," Professor Svenning concludes.

Cherry laurel is another example of a species that has not yet returned to Northern Europe since the last Ice Age, but which we have helped along by planting in our gardens. Here it was found in the English countryside. Photo: Jens-Christian Svenning, Aarhus University.

For more information, please contact

Professor Jens-Christian Svenning
Department of Bioscience
Aarhus University
+45 8715 6571/2899 2304
svenning@biology.au.dk
Disequilibrium vegetation dynamics under future climate change. J-C. Svenning and B. Sandel, American Journal of Botany 100(7), 2013.

Jens-Christian Svenning | EurekAlert!
Further information:
http://www.biology.au.dk

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>