Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clear cooling effect: wind screen on the Rhône glacier in Switzerland creates cold air cushion

08.12.2008
By constructing a wind screen on the Rhône glacier in Switzerland, cold downwinds, which normally pass unhindered into the valley, can be intercepted and collected, thus creating a cold air cushion at the wind screen and in its close vicinity.

"Our test wind screen set up on the Rhône glacier resulted in a definite cooling of the air near the surface, with the drop in temperature being up to three degrees centigrade," reported Professor Hans-Joachim Fuchs of the Institute of Geography of the Johannes Gutenberg University Mainz.

"We also suspect that this could make it possible to slow down the melting rate of the ice. However, although we were able to observe this phenomenon, we are unable to offer any clear proof of it.” Together with 27 geography students, Professor Fuchs on Friday night presented the results of a project study during which the participants investigated the effects of global climate change on the Rhône glacier and developed solutions to this problem.

For this purpose, the students spent 10 days in the Wallis region in August 2008 and set up a wind screen with a length of 15 meters and a height of three meters. Over a period of six days, eleven digital measuring stations were used to record 95,000 measurement values to determine the air temperature directly at the wind screen, in its immediate vicinity, and at a distance from it. The data evaluation showed that the cooling effect was greatest when the sky was clear and there was a prevailing downwind. The temperatures within the wind screen were on average 1.5 to 2 degrees lower at night than the temperatures outside the wind screen. The maximum temperature difference recorded was as much as 3 degrees centigrade. "The further away the stations were from the wind screen, the higher the temperature measured," Fuchs reported. "This is a very definite, well-defined and above all consistent trend, which shows that the wind screen experiment worked."

Even on days with low pressure weather conditions, characterized by strong cloud cover and rain, with the wind coming from the south-west, the night-time temperatures inside the wind screen were 0.8 to 1 degree centigrade lower than outside the wind screen. Although the temperatures inside the wind screen area were generally lower during the day, the effect was not as clear as it was at night, as other influences such as direct solar radiation had an effect on the measuring stations. "The effectiveness of the wind screen would surely have been even greater if we had had stable high-pressure weather conditions with stronger, catabatic glacier winds," Fuchs added.

For technical reasons, it was not possible to measure the temperature of the ice surface with special infrared devices. Consequently, no data about the cooling of the glacier ice is available. "We were able to observe, though, that the hardness of the ice in the vicinity of the wind screen remained approximately the same throughout the day, while outside the wind screen, the ice crystals melted on the surface and the hardness decreased." Further observations of the project team support the estimate that the melting rate decreased in the vicinity of the wind screen.

A survey among visitors to the Rhône glacier also formed part of the project study. Although it was concluded that most of the 230 respondents were aware of climate change, they had no knowledge about the possible consequences and dangers. Against this background, the team designed a learning path called "Seeing and understanding the glacier", which runs along a kilometer-long footpath to a famous ice grotto. The grotto is visited by up to 1,500 tourists per day during the summer months. In addition, a folder was designed to inform people about the glacier, the way it is changing as well as the possible effects of climate change. Both the learning path and the folder were financed by a Swiss company.

Another sub-project was the educational film produced by the students of Mainz university using professional equipment, which is to be shown to the public on 6 February 2009.

"The test wind screen is, of course, much too small for a glacier. However, as it showed a clear cooling effect, this provides a starting point for further ideas and improvements to the construction. The students have already submitted recommendations in this regard." Project manager Fuchs also pointed out that this is merely a matter of treating the symptoms, while treating the cause remains the "top priority." According to Professor Fuchs, however, the glacier is retreating too quickly to wait until there is global insight into climate protection. "Most of our drinking water reserves are still bound in the glacier ice, but how long will this still be the case?"

Prof Dr Hans-Joachim Fuchs | alfa
Further information:
http://www.uni-mainz.de

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>