Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clays on Mars: More Plentiful Than Expected

21.12.2012
A new study co-authored by the Georgia Institute of Technology indicates that clay minerals, rocks that usually form when water is present for long periods of time, cover a larger portion of Mars than previously thought.

In fact, Assistant Professor James Wray and the research team say clays were in some of the rocks studied by Opportunity when it landed at Eagle crater in 2004. The rover only detected acidic sulfates and has since driven about 22 miles to Endeavour Crater, an area of the planet Wray pinpointed for clays in 2009.

The study is published online in the current edition of Geophysical Research Letters.

The project, which was led by Eldar Noe Dobrea of the Planetary Science Institute, identified the clay minerals using a spectroscopic analysis from the Mars Reconnaissance Orbiter. The research shows that clays also exist in the Meridiani plains that Opportunity rolled over as it trekked toward its current position.

“It’s not a surprise that Opportunity didn’t find clays while exploring,” said Wray, a faculty member in the School of Earth and Atmospheric Sciences. “We didn’t know they existed on Mars until after the rover arrived. Opportunity doesn’t have the same tools that have proven so effective for detecting clays from orbit.”

The clay signatures near Eagle crater are very weak, especially compared to those along the rim and inside Endeavour crater. Wray believes clays could have been more plentiful in the past, but Mars’ volcanic, acidic history has probably eliminated some of them.

"It was also surprising to find clays in geologically younger terrain than the sulfates,” said Dobrea. Current theories of Martian geological history suggest that clays, a product of aqueous alteration, actually formed early on when the planet's waters were more alkaline. As the water acidified due to volcanism, the dominant alteration mineralogy became sulfates. "This forces us to rethink our current hypotheses of the history of water on Mars," he added.

Even though Opportunity has reached an area believed to contain rich clay deposits, the odds are still stacked against it. Opportunity was supposed to survive for only three months. It’s still going strong nine years later, but the rover’s two mineralogical instruments don’t work anymore. Instead, Opportunity must take pictures of rocks with its panoramic camera and analyze targets with a spectrometer to try and determine the composition of rock layers.

“So far, we’ve only been able to identify areas of clay deposits from orbit,” said Wray. “If Opportunity can find a sample and give us a closer look, we should be able to determine how the rock was formed, such as in a deep lake, shallow pond or volcanic system.”

As for the other rover on the other side of Mars, Curiosity’s instruments are better equipped to search for signs of past or current conditions for habitable life, thanks in part to Opportunity. Wray is a member of Curiosity’s science team.

Jason Maderer | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>