Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cities Affect Temperatures for Thousands of Miles

28.01.2013
Even if you live more than 1,000 miles from the nearest large city, it could be affecting your weather.

In a new study that shows the extent to which human activities are influencing the atmosphere, scientists have concluded that the heat generated by everyday activities in metropolitan areas alters the character of the jet stream and other major atmospheric systems. This affects temperatures across thousands of miles, significantly warming some areas and cooling others, according to the study in Nature Climate Change.


Image credit: NASA and NOAA.

This composite image shows a global view of Earth at night, compiled from over 400 satellite images. New research shows that major cities, which generally correspond with the nighttime lights in this image, can have a far-reaching impact on temperatures.

The extra “waste heat” generated from buildings, cars, and other sources in major Northern Hemisphere urban areas causes winter warming across large areas of northern North American and northern Asia. Temperatures in some remote areas increase by as much as 1 degree Celsius (1.8 degrees Fahrenheit), according to the research by scientists at the Scripps Institution of Oceanography, University of California, San Diego; Florida State University; and the National Center for Atmospheric Research.

At the same time, the changes to atmospheric circulation caused by the waste heat cool areas of Europe by as much as 1 degree C (1.8 degrees F), with much of the temperature decrease occurring in the fall.

The net effect on global mean temperatures is nearly negligible—an average increase worldwide of just 0.01 degrees C (about 0.02 degrees F). This is because the total human-produced waste heat is only about 0.3 percent of the heat transported across higher latitudes by atmospheric and oceanic circulations.

However, the noticeable impact on regional temperatures may explain why some regions are experiencing more winter warming than projected by climate computer models, the researchers conclude. They suggest that models be adjusted to take the influence of waste heat into account.

"The burning of fossil fuel not only emits greenhouse gases but also directly affects temperatures because of heat that escapes from sources like buildings and cars,” says NCAR scientist Aixue Hu, a co-author of the study. “Although much of this waste heat is concentrated in large cities, it can change atmospheric patterns in a way that raises or lowers temperatures across considerable distances.”

The researchers stressed that the effect of waste heat is distinct from the so-called urban heat island effect. Such islands are mainly a function of the heat collected and re-radiated by pavement, buildings, and other urban features, whereas the new study examines the heat produced directly through transportation, heating and cooling units, and other activities.

The study, “Energy consumption and the unexplained winter warming over northern Asia and North America” appears this Sunday. It was funded by the National Science Foundation, NCAR’s sponsor, as well as the Department of Energy and the National Oceanic and Atmospheric Administration.

Hu, along with lead author Guang Zhang of Scripps and Ming Cai of Florida State University, analyzed the energy consumption – from heating buildings to powering vehicles – that generates waste heat release. The world’s total energy consumption in 2006 was equivalent to a constant-use rate of 16 terawatts (one terawatt, or TW, equals 1 trillion watts). Of that, an average rate of 6.7 TW was consumed in 86 metropolitan areas in the Northern Hemisphere.

Using a computer model of the atmosphere, the authors found that the influence of this waste heat can widen the jet stream.

“What we found is that energy use from multiple urban areas collectively can warm the atmosphere remotely, thousands of miles away from the energy consumption regions,” Zhang says. “This is accomplished through atmospheric circulation change.”

The release of waste heat is different from energy that is naturally distributed in the atmosphere, the researchers noted. The largest source of heat, solar energy, warms Earth’s surface and atmospheric circulations redistribute that energy from one region to another. Human energy consumption distributes energy that had lain dormant and sequestered for millions of years, mostly in the form of oil or coal.

Though the amount of human-generated energy is a small portion of that transported by nature, it is highly concentrated in urban areas. In the Northern Hemisphere, many of those urban areas lie directly under major atmospheric troughs and jet streams.

“The world’s most populated and energy-intensive metropolitan areas are along the east and west coasts of the North American and Eurasian continents, underneath the most prominent atmospheric circulation troughs and ridges,” Cai says. “The release of this concentrated waste energy causes the noticeable interruption to the normal atmospheric circulation systems above, leading to remote surface temperature changes far away from the regions where waste heat is generated.”

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

About the article:

Title: Energy consumption and the unexplained winter warming over northern Asia and North America

Authors: Ghang J. Zhang, Ming Cai, and Aixue Hu

Publication: Nature Climate Change, Jan. 27, 2013

On the Web:

For news releases, images, and more
www.ucar.edu/atmosnews
David Hosansky, NCAR/UCAR Media Relations
303-497-8611
hosansky@ucar.edu
Zhenya Gallon, NCAR/UCAR Media Relations
303-497-8607
zhenya@ucar.edu
Aixue Hu, NCAR Scientist
ahu@ucar.edu
303-497-1334
Guang Zhang, Scripps Research Meteorologist
gzhang@mail.ucsd.edu
858-534-7535
Ming Cai, FSU Professor, Department of Earth, Ocean, and Atmospheric Science
mcai@fsu.edu
850-645-1551

David Hosansky | Newswise
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>