Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese and American paleontologists discover a new Mesozoic mammal

12.10.2009
Ear structure shows how mammalian ear evolution occurred while dinosaurs dominated the world

An international team of paleontologists has discovered a new species of mammal that lived 123 million years ago in what is now the Liaoning Province in northeastern China. The newly discovered animal, Maotherium asiaticus, comes from famous fossil-rich beds of the Yixian Formation. This new remarkably well preserved fossil, as reported in the October 9 issue of the prestigious journal Science, offers an important insight into how the mammalian middle ear evolved.

The discoveries of such exquisite dinosaur-age mammals from China provide developmental biologists and paleontologists with evidence of how developmental mechanisms have impacted the morphological (body-structure) evolution of the earliest mammals and sheds light on how complex structures can arise in evolution because of changes in developmental pathways.

"What is most surprising, and thus scientifically interesting, is this animal's ear," says Dr. Zhe-Xi Luo, curator of vertebrate paleontology and associate director of science and research at Carnegie Museum of Natural History. "Mammals have highly sensitive hearing, far better than the hearing capacity of all other vertebrates, and hearing is fundamental to the mammalian way of life. The mammalian ear evolution is important for understanding the origins of key mammalian adaptations."

Thanks to their intricate middle ear structure, mammals (including humans) have more sensitive hearing, discerning a wider range of sounds than other vertebrates. This sensitive hearing was a crucial adaptation, allowing mammals to be active in the darkness of the night and to survive in the dinosaur-dominated Mesozoic.

Mammalian hearing adaptation is made possible by a sophisticated middle ear of three tiny bones, known as the hammer (malleus), the anvil (incus), and the stirrup (stapes), plus a bony ring for the eardrum (tympanic membrane). These mammal middle ear bones evolved from the bones of the jaw hinge in their reptilian relatives. Paleontologists have long attempted to understand the evolutionary pathway via which these precursor jawbones became separated from the jaw and moved into the middle ear of modern mammals.

To evolutionary biologists, an understanding of how the sophisticated and highly sensitive mammalian ear evolved may illuminate how a new and complex structure transforms through evolution. According to the Chinese and American scientists who studied this new mammal, the middle ear bones of Maotherium are partly similar to those of modern mammals; but Maotherium's middle ear has an unusual connection to the lower jaw that is unlike that of adult modern mammals. This middle ear connection, also known as the ossified Meckel's cartilage, resembles the embryonic condition of living mammals and the primitive middle ear of pre-mammalian ancestors.

Because Maotherium asiaticus is preserved three-dimensionally, paleontologists were able to reconstruct how the middle ear attached to the jaw. This can be a new evolutionary feature. Or, it can be interpreted as having a "secondarily reversal to the ancestral condition," meaning that the adaptation is the caused by changes in development. (See graphics of mammalian ear evolution, as represented by Maotherium).

Modern developmental biology has shown that developmental genes and their gene network can trigger the development of unusual middle ear structures, such as "re-appearance" of the Meckel's cartilage in modern mice. The middle ear morphology in fossil mammal Maotherium of the Cretaceous (145-65 million years ago) is very similar to the mutant morphology in the middle ear of the mice with mutant genes. The scientific team studying the fossil suggests that the unusual middle ear structure, such as the ossified Meckel's cartilage, is actually the manifestation of developmental gene mutations in the deep times of Mesozoic mammal evolution.

Maotherium asiaticus is a symmetrodont, meaning that it has teeth with symmetrically arranged cusps specialized for feeding on insects and worms. It lived on the ground and had a body 15 cm (5 inches) long and weighing approximately 70 to 80 grams (.15 to .17 lbs). By studying all features in this exquisitely preserved fossil, researchers believe Maotherium to be more closely related to marsupials and placentals than to monotremes—primitive egg-laying mammals of Australia and New Guinea such as the platypus.

The article in Science is authored by Dr. Qiang Ji of Chinese Academy of Geological Sciences (Beijing), Dr. Zhe-Xi Luo (Carnegie Museum of Natural History) and Mr. Xinliang Zhang (Henan Provincial Geological Museum), along with other collaborators.

The researchers received support from National Science Foundation (USA), National Natural Science Foundation (China), Ministry of Science and Technology (China), and National Geographic Society.

Additional information is available by contacting:
Dr. Zhe-Xi Luo
LuoZ@CarnegieMNH.org
Background information on mammal ear: http://en.wikipedia.org/wiki/Ear#Middle_ear

Images available at: http://www.carnegiemnh.org/news/09-oct-dec/100909maotherium-media.htm

Carnegie Museum of Natural History, one of the four Carnegie Museums of Pittsburgh, is ranked as one of the top five natural history museums in the country. It maintains, preserves, and interprets an extraordinary collection of 20 million objects and scientific specimens used to broaden understanding of evolution, conservation, and biodiversity.

Leigh Kish | EurekAlert!
Further information:
http://www.carnegiemuseums.org
http://www.carnegiemnh.org

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>