Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


China fossil shows bird, crocodile family trees split earlier than thought

A fossil unearthed in China in the 1970s of a creature that died about 247 million years ago, originally thought to be a distant relative of both birds and crocodiles, turns out to have come from the crocodile family tree after it had already split from the bird family tree, according to research led by a University of Washington paleontologist.

The only known specimen of Xilousuchus sapingensis has been reexamined and is now classified as an archosaur. Archosaurs, characterized by skulls with long, narrow snouts and teeth set in sockets, include dinosaurs as well as crocodiles and birds.

The new examination dates the X. sapingensis specimen to the early Triassic period, 247 million to 252 million years ago, said Sterling Nesbitt, a UW postdoctoral researcher in biology. That means the creature lived just a short geological time after the largest mass extinction in Earth's history, 252 million years ago at the end of the Permian period, when as much as 95 percent of marine life and 70 percent of land creatures perished. The evidence, he said, places X. sapingensis on the crocodile side of the archosaur family tree.

"We're marching closer and closer to the Permian-Triassic boundary with the origin of archosaurs," Nesbitt said. "And today the archosaurs are still the dominant land vertebrate, when you look at the diversity of birds."

The work could sharpen debate among paleontologists about whether archosaurs existed before the Permian period and survived the extinction event, or if only archosaur precursors were on the scene before the end of the Permian.

"Archosaurs might have survived the extinction or they might have been a product of the recovery from the extinction," Nesbitt said.

The research is published May 17 online in Earth and Environmental Science Transactions of the Royal Society of Edinburgh, a journal of Cambridge University in the United Kingdom.

Co-authors are Jun Liu of the American Museum of Natural History in New York and Chun Li of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, China. Nesbitt did most of his work on the project while a postdoctoral researcher at the University of Texas at Austin.

The X. sapingensis specimen – a skull and 10 vertebrae – was found in the Heshanggou Formation in northern China, an area with deposits that date from the early and mid-Triassic period, from 252 million to 230 million years ago, and further back, before the mass extinction.

The fossil was originally classified as an archosauriform, a "cousin" of archosaurs, rather than a true archosaur, but that was before the discovery of more complete early archosaur specimens from other parts of the Triassic period. The researchers examined bones from the specimen in detail, comparing them to those from the closest relatives of archosaurs, and discovered that X. sapingensis differed from virtually every archosauriform.

Among their findings was that bones at the tip of the jaw that bear the teeth likely were not downturned as much as originally thought when the specimen was first described in the 1980s. They also found that neural spines of the neck formed the forward part of a sail similar to that found on another ancient archosaur called Arizonasaurus, a very close relative of Xilousuchus found in Arizona.

The family trees of birds and crocodiles meet somewhere in the early Triassic and archosauriforms are the closest cousin to those archosaurs, Nesbitt said. But the new research places X. sapingensis firmly within the archosaur family tree, providing evidence that the early members of the crocodile and bird family trees evolved earlier than previously thought.

"This animal is closer to a crocodile, but it's not a crocodile. If you saw it today you wouldn't think it was a crocodile, especially not with a sail on its back," he said.

The research was funded by the National Science Foundation, the Society of Vertebrate Paleontology, the American Museum of Natural History and the Chinese Academy of Sciences.

For more information, contact Nesbitt at 480-215-6114 or

For copies of the paper, contact Vicki Hammond at the Royal Society of Edinburgh, +44 (0)131 240 5039 (direct line with voicemail) or

Vince Stricherz | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>