Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

China fossil shows bird, crocodile family trees split earlier than thought

19.05.2011
A fossil unearthed in China in the 1970s of a creature that died about 247 million years ago, originally thought to be a distant relative of both birds and crocodiles, turns out to have come from the crocodile family tree after it had already split from the bird family tree, according to research led by a University of Washington paleontologist.

The only known specimen of Xilousuchus sapingensis has been reexamined and is now classified as an archosaur. Archosaurs, characterized by skulls with long, narrow snouts and teeth set in sockets, include dinosaurs as well as crocodiles and birds.

The new examination dates the X. sapingensis specimen to the early Triassic period, 247 million to 252 million years ago, said Sterling Nesbitt, a UW postdoctoral researcher in biology. That means the creature lived just a short geological time after the largest mass extinction in Earth's history, 252 million years ago at the end of the Permian period, when as much as 95 percent of marine life and 70 percent of land creatures perished. The evidence, he said, places X. sapingensis on the crocodile side of the archosaur family tree.

"We're marching closer and closer to the Permian-Triassic boundary with the origin of archosaurs," Nesbitt said. "And today the archosaurs are still the dominant land vertebrate, when you look at the diversity of birds."

The work could sharpen debate among paleontologists about whether archosaurs existed before the Permian period and survived the extinction event, or if only archosaur precursors were on the scene before the end of the Permian.

"Archosaurs might have survived the extinction or they might have been a product of the recovery from the extinction," Nesbitt said.

The research is published May 17 online in Earth and Environmental Science Transactions of the Royal Society of Edinburgh, a journal of Cambridge University in the United Kingdom.

Co-authors are Jun Liu of the American Museum of Natural History in New York and Chun Li of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, China. Nesbitt did most of his work on the project while a postdoctoral researcher at the University of Texas at Austin.

The X. sapingensis specimen – a skull and 10 vertebrae – was found in the Heshanggou Formation in northern China, an area with deposits that date from the early and mid-Triassic period, from 252 million to 230 million years ago, and further back, before the mass extinction.

The fossil was originally classified as an archosauriform, a "cousin" of archosaurs, rather than a true archosaur, but that was before the discovery of more complete early archosaur specimens from other parts of the Triassic period. The researchers examined bones from the specimen in detail, comparing them to those from the closest relatives of archosaurs, and discovered that X. sapingensis differed from virtually every archosauriform.

Among their findings was that bones at the tip of the jaw that bear the teeth likely were not downturned as much as originally thought when the specimen was first described in the 1980s. They also found that neural spines of the neck formed the forward part of a sail similar to that found on another ancient archosaur called Arizonasaurus, a very close relative of Xilousuchus found in Arizona.

The family trees of birds and crocodiles meet somewhere in the early Triassic and archosauriforms are the closest cousin to those archosaurs, Nesbitt said. But the new research places X. sapingensis firmly within the archosaur family tree, providing evidence that the early members of the crocodile and bird family trees evolved earlier than previously thought.

"This animal is closer to a crocodile, but it's not a crocodile. If you saw it today you wouldn't think it was a crocodile, especially not with a sail on its back," he said.

The research was funded by the National Science Foundation, the Society of Vertebrate Paleontology, the American Museum of Natural History and the Chinese Academy of Sciences.

For more information, contact Nesbitt at 480-215-6114 or sjn2104@gmail.com

For copies of the paper, contact Vicki Hammond at the Royal Society of Edinburgh, +44 (0)131 240 5039 (direct line with voicemail) or vhammond@royalsoced.org.uk

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>