Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Equator’ discovery will aid pollution mapping

25.09.2008
Scientists at the University of York have discovered a ‘Chemical Equator’ that divides the polluted air of the Northern Hemisphere from the largely uncontaminated atmosphere of the Southern Hemisphere.

Researchers from the University’s Department of Chemistry found evidence for an atmospheric chemical equator around 50 km wide in cloudless skies in the Western Pacific. Their findings show for the first time that the chemical and meteorological boundaries between the two air masses are not necessarily the same.

The discovery will provide important clues to help scientists to model simulations of the movement of pollutants in the atmosphere more accurately, and to assess the impact of pollution on climate. The study is part of the ACTIVE project (Aerosol and Chemical Transport in Tropical Convection) funded by the Natural Environment Research Council.

Previously, scientists believed that the Intertropical Convergence Zone (ITCZ) formed the boundary between the polluted air of the Northern Hemisphere and the cleaner air of the Southern Hemisphere. The ITCZ is a cloudy region circling the globe where the trade winds from each hemisphere meet. It is characterised by rapid vertical uplift and heavy rainfall, and acts as a meteorological barrier to pollutant transport between the hemispheres.

But the new research, to be published in the Journal of Geophysical Research - Atmospheres, found huge differences in air quality on either side of the chemical equator, which was 50 km wide and well to the north of the ITCZ. The study revealed that carbon monoxide, a tracer of combustion, increased from 40 parts per billion to the south, to 160 parts per billion in the north. The difference in pollutant levels was increased by extensive forest fires to the north of the boundary and very clean air south of the chemical equator being pulled north from the Southern Indian Ocean by a land based cyclone in northern Australia.

The scientists discovered evidence of the chemical equator using sensors on a specially equipped aeroplane during a series of flights north of Darwin. At the time, the ITCZ was situated well to the south over central Australia.

Dr Jacqueline Hamilton, of the Department of Chemistry at York, said: "The shallow waters of the Western Pacific, known as the Tropical Warm Pool, have some of highest sea surface temperatures in the world, which result in the region’s weather being dominated by storm systems. The position of the chemical equator was to the south of this stormy region during the ACTIVE campaign.

"This means that these powerful storms may act as pumps, lifting highly polluted air from the surface to high in the atmosphere where pollutants will remain longer and may have a global influence. To improve global simulations of pollutant transport, it is vital to know when the chemical and meteorological boundary are in different locations."

The York researchers were part of a team, including scientists from the universities of Manchester and Cambridge, that studied transport of pollutants in the Western Pacific. The ACTIVE project is led by Professor Geraint Vaughan, of the University of Manchester.

The research was funded by the Natural Environment Research Council (NERC). Other partners include the Australian Bureau of Meteorology and Flinders University. Flights were carried out onboard the NERC Airborne Research and Survey Facility Dornier 228 aircraft.

David Garner | alfa
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/admin/presspr/pressreleases/chemicalequator.htm

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>