Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chart shows the entire topography of the Antarctic seafloor in detail for the first time

09.04.2013
Reliable information on the depth and floor structure of the Southern Ocean has so far been available for only few coastal regions of the Antarctic.

An international team of scientists under the leadership of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, has for the first time succeeded in creating a digital map of the entire Antarctic seafloor.


Polarstern's multibeam system
Illustration: Alfred-Wegener-Institut

The International Bathymetric Chart of the Southern Ocean (IBCSO) for the first time shows the detailed topography of the seafloor for the entire area south of 60°S. An article presented to the scientific world by IBCSO has now appeared online in the scientific journal Geophysical Research Letters. The IBCSO data grid and the corresponding Antarctic chart will soon be freely available in the internet and are intended to help scientists amongst others to better understand and predict sea currents, geological processes or the behaviour of marine life.

The new bathymetric chart of the Southern Ocean is an excellent example of what scientists can achieve if researchers from around the world work across borders. “For our IBCSO data grid, scientists from 15 countries and over 30 research institutions brought together their bathymetric data from nautical expeditions. We were ultimately able to work with a data set comprising some 4.2 billion individual values”, explains IBCSO editor Jan Erik Arndt, bathymetric expert at the Alfred Wegener Institute in Bremerhaven.

Collecting bathymetric data, as with the German research vessel Polarstern with its multibeam echo sounding system, was nowhere near enough, however, to develop a useful, three-dimensional model of the seafloor: “The ocean south of the 60th parallel extends over an area of some 21 million square kilometres and is therefore around 60 times as large as the Federal Republic of Germany. Reliable bathymetric data have so far existed for only 17 per cent of this area. The largest data gaps, for example, are in the deep sea regions of the south Indian Ocean and the South Pacific and in areas which experience difficult sea ice conditions throughout the year in some places, such as in the Weddell Sea”, says Jan Erik Arndt.

For this reason the mappers did not just take the trouble to digitize old Antarctic nautical charts and to convert satellite data. They also used a mathematical trick by interpolating the data set. “We treated every existing measurement point like a tent pole to a certain extent and arithmetically covered these poles with a tarpaulin. In this way we obtained approximate values about the height of the tarpaulin between the poles”, explains the AWI specialist for data modeling.

This work was worth it: the IBCSO data grid has a resolution of 500 times 500 metres. This means that one data point reflects the depth of a sea area of 500 times 500 metres – a feature that leads to impressive degree of detail.

Where older models only offer a glimpse of a mountain in the deep sea, IBCSO shows an elevation with sharp ridge crests and deep channels in the slopes. A formerly flat point at the bottom of the Riiser-Larsen Sea can now be identified as an offshoot, some 300 metres deep, of the underwater Ritscher Canyon which runs along a length of over 100 kilometres from the south west to the north. And not far away from today’s shelf ice edge of the large Getz ice shelf the furrows are to be seen quite clearly which were ploughed into the seafloor by the ice tongue as it grew.

Using this degree of detail IBCSO is primarily intended to push ahead with research: “The depth data of the Southern Ocean are of great interest to polar researchers from many disciplines. The 3D data grids of the seafloor enable oceanographers to model currents and the movement of the deep Antarctic water which is of such great importance. Geologists are able to recognise the structures of geological processes more easily. Biologists may be able to better estimate the regions in which certain biological communities may emerge or whether, for example, seals dive to the bottom of the sea in a certain area in search of food”, explains Jan Erik Arndt.

However, despite the elation about the new model and its chart, it should not be forgotten that more than 80 per cent of the area of the South Polar Sea is still unchartered. Jan Erik Arndt: “We hope that as our data grid becomes better known in the scientific world, other scientists will be more willing to provide us with their data of current and future depth measurements in the South Polar Sea. The chances are not bad. A few new research ice breakers are currently being built around the world and every one of them will presumably be equipped with a modern multibeam echo sounder in the same way as Polarstern.”

Both the IBCSO data grid and a digital print template of the chart (dimensions: 100 centimetres times 120 centimetres) will be available for downloading to everyone soon on the project website at http://www.ibcso.org.

IBCSO is a project of the General Bathymetric Chart of the Oceans (GEBCO). It is supported by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, the International Hydrographical Organisation (IHO), the Hydrographic Commission on Antarctica (HCA) and by the Scientific Committee on Antarctic Research (SCAR). The geodesy and bathymetry working group of the Alfred Wegener Institute coordinates the project and is responsible for the entire modelling work.

More information on IBCSO and the research institutions involved is available at the project website at http://www.ibcso.org.
Notes for Editors:
The IBCSO scientific article appeared in the online issue of Geophysical Research Letters under the following title:
Jan Erik Arndt et al. (2013): The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 – A new bathymetric compilation covering circum-Antarctic waters, DOI: 10.1002/grl.50413 (Link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50413/abstract)

Printable photos of the 3D model of the Antarctic sea floor and the new two-dimensional Antarctic chart are available in the online edition of this press release at: http://www.awi.de/en/news/press_releases/

Your contact partners at the Alfred Wegener Institute are the IBCSO editor Jan Erik Arndt (Tel: +49 471 4831-1369, e-mail: Jan.Erik.Arndt(at)awi.de ) and Sina Löschke in the Press Office (Tel: +49 471-4831-2008, e-mail: Sina.Loeschke(at)awi.de).

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_de) and Facebook (http://www.facebook.com/AlfredWegenerInstitut) for all current news and information on everyday stories from the life of the Institute.

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de
http://www.awi.de/en/news/press_releases/

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>