Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing Antarctic winds create new sea level threat

07.07.2014

New research shows projected changes in the winds circling the Antarctic may accelerate global sea level rise significantly more than previously estimated.

Changes to Antarctic winds have already been linked to southern Australia’s drying climate but now it appears they may also have a profound impact on warming ocean temperatures under the ice shelves along the coastline of West and East Antarctic.


 “When we included projected Antarctic wind shifts in a detailed global ocean model, we found water up to 4°C warmer than current temperatures rose up to meet the base of the Antarctic ice shelves,” said lead author Dr Paul Spence from the ARC Centre of Excellence for Climate System Science (ARCCSS).

 “The sub-surface warming revealed in this research is on average twice as large as previously estimated with almost all of coastal Antarctica affected. This relatively warm water provides a huge reservoir of melt potential right near the grounding lines of ice shelves around Antarctica. It could lead to a massive increase in the rate of ice sheet melt, with direct consequences for global sea level rise.”

Prior to this research by Dr Spence and colleagues from Australian National University and the University of New South Wales, most sea level rise studies focused on the rate of ice shelf melting due to the general warming of the ocean over large areas.

Using super computers at Australia’s National Computational Infrastructure (NCI) Facility the researchers were able to examine the impacts of changing winds on currents down to 700m around the coastline in greater detail than ever before.

Previous global models did not adequately capture these currents and the structure of water temperatures at these depths. Unexpectedly, this more detailed approach suggests changes in Antarctic coastal winds due to climate change and their impact on coastal currents could be even more important on melting of the ice shelves than the broader warming of the ocean.

“When we first saw the results it was quite a shock. It was one of the few cases where I hoped the science was wrong,” Dr Spence said.

“But the processes at play are quite simple, and well-resolved by the ocean model, so this has important implications for climate and sea-level projections. What is particularly concerning is how easy it is for climate change to increase the water temperatures beside Antarctic ice sheets.”

The research may help to explain a number of sudden and unexplained increases in global sea levels that occurred in the geological past.   

“It is very plausible that the mechanism revealed by this research will push parts of the West Antarctic Ice Sheet beyond a point of no return,” said Dr Axel Timmerman, Prof of Oceanography at University of Hawaii and an IPCC lead author who has seen the paper.

“This work suggests the Antarctic ice sheets may be less stable to future climate change than previously assumed.”

Recent estimates suggest the West Antarctic Ice Sheet alone could contribute 3.3 metres to long-term global sea level rise.

With both West and East Antarctica affected by the change in currents, in the future abrupt rises in sea level become more likely.

According to another of the paper’s authors, Dr Nicolas Jourdain from ARCCSS, the mechanism that leads to rapid melting may be having an impact on the Western Antarctic right now. Dr Jourdain said it may help explain why the melt rate of some of the glaciers in that region are accelerating more than scientists expected.

“Our research indicates that as global warming continues, parts of East Antarctica will also be affected by these wind-induced changes in ocean currents and temperatures,” Dr Jourdain said.

“Dramatic rises in sea level are almost inevitable if we continue to emit greenhouse gases at the current rate.”

GRL Paper: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds
 

For more information, a copy of the paper or to arrange an interview contact:
ARCCSS Media Manager Alvin Stone. Ph: 0418 617 366. Email: alvin.stone@unsw.edu.au

Alvin Stone | Eurek Alert!
Further information:
https://www.climatescience.org.au/content/751-changing-antarctic-winds-create-new-sea-level-threat

More articles from Earth Sciences:

nachricht Earth Day: Disease spread among species is predictable
24.04.2015 | National Science Foundation

nachricht Warming climate may release vast amounts of carbon from long-frozen Arctic soils
24.04.2015 | University of Georgia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>