Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY professor foresees rising Antarctic snowmelt

07.12.2009
Marco Tedesco Says Record Low Resulted From Simultaneous Positive Phases for Two Climate Drivers

The 30-year record low in Antarctic snowmelt that occurred during the 2008-09 austral summer was likely due to concurrent strong positive phases for two main climate drivers, ENSO (El Niño - Southern Oscillation) and SAM (Southern Hemisphere Annular Mode), according to Dr. Marco Tedesco, Assistant Professor of Earth & Atmospheric Sciences at The City College of New York.

Professor Tedesco, who is also on the doctoral faculty at the CUNY Graduate Center, added that Antarctic snowmelt levels should revert to higher norms as one of the drivers, the SAM, subsides as the damage to the ozone layer is repaired. His conclusions, which are based on space-borne microwave observations between 1979 and 2009, were reported in “Geophysical Research Letters” earlier this fall.

“The study’s goal was not only to report on melting but also on the relationship between melting and the climate drivers, El Niño and the SAM,” he explained. Low melt years during the 1979-2009 satellite record are related to the strength of the westerly winds that encircle Antarctica, known as the Southern Hemisphere Annular Mode (SAM).

“When the SAM is in a positive phase – meaning that the belt of winds is stronger than average – it has a cooling effect on Antarctic surface temperatures,” he explained. “The SAM was especially strong in austral spring and summer 2008-2009, and subsequently the 2008-2009 snowmelt was lower than normal.”

During the past 30-40 years, the SAM has gradually strengthened during austral summer, due mainly to human-caused stratospheric ozone depletion, he continued. However, as the hole is repaired as a result of compliance with the Montreal protocol, the winds will weaken and Antarctica will be subject to more warming air.

The increasing summer SAM trends are projected to subside, he added. “It is likely that summer temperature increases over Antarctica will become stronger and more widespread because the warming effect from greenhouse gas increases will no longer be kept by the weakened circumpolar winds. The bottom line is as the ozone layer recovers we’ll likely have more melting on Antarctica.”

According to Professor Tedesco, variability in El Niño and the SAM account for up to 50 percent of the variations in Antarctic snowmelt. However, the melting trends over the whole continent derived from satellite data are not statistically significant, he noted.

“If you add one year of data, the trend could shift from positive to negative or vice versa. Thirty years is not enough to tell the overall trend for Antarctica.” However, he noted that studies based on land observations with data going back to the 1950s support a warming trend, especially on the Antarctic Peninsula.

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

Further reports about: Antarctic Predators Antarctica CCNY El Niño Hemisphere ozone layer

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>