Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching Space Weather in the Act

18.02.2011
Close to the globe, Earth's magnetic field wraps around the planet like a gigantic spherical web, curving in to touch Earth at the poles. But this isn't true as you get further from the planet.

As you move to the high altitudes where satellites fly, nothing about that field is so simple. Instead, the large region enclosed by Earth's magnetic field, known as the magnetosphere, looks like a long, sideways jellyfish with its round bulb facing the sun and a long tail extending away from the sun.

In the center of that magnetic tail lies the plasma sheet. Here, strange things can happen. Magnetic field lines pull apart and come back together, creating explosions when they release energy. Disconnected bits of the tail called "plasmoids" get ejected into space at two million miles per hour. And legions of charged particles flow back toward Earth.

Such space weather events cause auroras and, when very strong, can produce radiation events that could cause our satellites to fail. But until now no one has been able to take pictures of these fascinating processes in the plasma sheet.

"Earth’s magnetic tail and its charged particles are invisible to conventional cameras that detect light,” says Jim Slavin, a magnetotail researcher who is the Director of the Heliophysics Division at NASA's Goddard Space Flight Center in Greenbelt, Md. "Events going on there have only been inferred based on other kinds of measurements."

Now, special cameras aboard the Interstellar Boundary Explorer, or IBEX, spacecraft have snapped the first shots of this complex space environment. Instead of recording light, these two large single-pixel cameras detect energetic neutral atoms. Such fast-moving atoms are formed whenever atoms in the furthest reaches of Earth's atmosphere collide with charged particles and get sent speeding off in a new direction. Called Energetic Neutral Atom or ENA imaging, the technique captured unprecedented images of the plasma sheet.

"The image alone is remarkable and would have made a great paper in and of itself because it's the first time we’ve imaged these important regions of the magnetosphere," says Dr. David McComas, principal investigator of the IBEX mission and assistant vice president of the Space Science and Engineering Division at Southwest Research Institute in San Antonio, Texas. The results appeared online in the Journal of Geophysical Research on Feb. 16, 2011.

But when they looked closely, the group realized they didn't only have a picture of a quiescent plasma sheet. The various images appear to show a piece of the plasma sheet being bitten off and ejected down the tail. They think they've caught a plasmoid in the moment it was being formed. If they're correct, this would be the first time such an event was directly seen.

"Imagine the magnetosphere as one of those balloons that people make animals out of. If you take your hands and squeeze the balloon, the pressure forces the air into another segment of the balloon," says McComas. "Similarly, the solar wind at times increases the pressure around the magnetosphere, resulting in a portion of the plasma sheet being pinched away from a larger mass and forced down the magnetotail."

Because researchers believe this phenomenon generally occurs deeper in the magnetotail, the IBEX team is considering other explanations for the event, as well. One possibility is that the plasma sheet is being squeezed by the solar wind.

While not specifically designed to observe the magnetosphere, IBEX's vantage point in space provides twice-yearly (spring and fall) seasons for viewing from outside the magnetosphere. Since its October 2008 launch, the IBEX science mission has flourished into multiple other research studies as well. In addition to supporting magnetospheric science, the spacecraft has also directly collected hydrogen and oxygen from the interstellar medium for the first time and produced the first ENA images of the outer edges of the bubble surrounding the Sun, called the heliosphere.

"Based upon the IBEX mission and its revolutionary ENA camera technology," says Slavin, "future NASA science missions may be able to make high definition videos of the development of space weather systems around the Earth to advance our scientific understanding of these phenomena and, eventually, enable space weather prediction like Earth weather prediction."

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorers spacecraft. The Southwest Research Institute developed the IBEX mission with a team of national and international partners. Goddard manages the Explorers Program for the Science Mission Directorate in Washington.

More information about the paper can be found here.

Karen C. Fox
NASA's Goddard Space Flight Center

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/ibex/news/spaceweather.html

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>