Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching solar particles infiltrating Earth's atmosphere

01.06.2012
On May 17, 2012 an M-class flare exploded from the sun. The eruption also shot out a burst of solar particles traveling at nearly the speed of light that reached Earth about 20 minutes after the light from the flare.

An M-class flare is considered a "moderate" flare, at least ten times less powerful than the largest X-class flares, but the particles sent out on May 17 were so fast and energetic that when they collided with atoms in Earth's atmosphere, they caused a shower of particles to cascade down toward Earth's surface. The shower created what's called a ground level enhancement (GLE).

GLEs are quite rare – fewer than 100 events have been observed in the last 70 years, since instruments were first able to detect them. Moreover, this was the first GLE of the current solar cycle--a sure sign that the sun's regular 11-year cycle is ramping up toward solar maximum.

This GLE has scientists excited for another reason, too. The joint Russian/Italian mission PAMELA, short for Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics, simultaneously measured the particles from the sun that caused the GLE. Solar particles have been measured before, but PAMELA is sensitive to the very high-energy particles that reach ground level at Earth. The data may help scientists understand the details of what causes this space weather phenomenon, and help them tease out why a relatively small flare was capable of producing the high-speed particles needed to cause a GLE.

"Usually we would expect this kind of ground level enhancement from a giant coronal mass ejection or a big X-class flare," says Georgia de Nolfo, a space scientist who studies high speed solar particles at NASA's Goddard Space Flight Center in Greenbelt, Md. "So not only are we really excited that we were able to observe these particularly high energy particles from space, but we also have a scientific puzzle to solve."

The path to this observation began on Saturday, May 5, when a large sunspot rotated into view on the left side of the sun. The sunspot was as big as about 15 Earths, a fairly sizable active region, though by no means as big as some of the largest sunspots that have been observed on the sun. Dubbed Active Region 1476, the sunspots had already shown activity on the back side of the sun—as seen by a NASA mission called the Solar Terrestrial Relations Observatory (STEREO) -- so scientists were on alert for more. Scientists who study high-energy particles from the sun had been keeping their eye out for just such an active region because they had seen no GLEs since December of 2006.

In addition, they had high hopes that the PAMELA mission, which had focused on cosmic rays from outside our galaxy could now be used to observe solar particles. Such "solar cosmic rays" are the most energetic particles that can be accelerated at or near the sun.

But there was a hitch: the satellite carrying the PAMELA instruments were not currently usable since they were in calibration mode. Scientists including de Nolfo and another Goddard researcher, Eric Christian, let the PAMELA collaboration know that this might be the chance they had been waiting for and they convinced the Russian team in charge of the mission to turn the instruments back on to science mode.

"And then the active region pretty much did nothing for two weeks," says Christian. "But just before it disappeared over the right side of the sun, it finally erupted with an M-class flare."

Bingo. Neutron monitors all over the world detected the shower of neutrons that represent a GLE. Most of the time the showers are not the solar energetic particles themselves, but the resultant debris of super-fast particles slamming into atoms in Earth's atmosphere. The elevated levels of neutrons lasted for an hour.

Simultaneously, PAMELA recorded the incoming solar particles up in space, providing one of the first in-situ measurements of the stream of particles that initiated a GLE. Only the early data has been seen so far, but scientists have high hopes that as more observations are relayed down to Earth, they will be able to learn more about the May 17 onslaught of solar protons, and figure out why this event triggered a GLE when earlier bursts of solar protons in January and March, 2012 didn't.

PAMELA is a space-borne experiment of the WiZard collaboration, which is an international collaboration between Italian (I.N.F.N. – Istituto Nazionale di Fisica Nucleare), Russian, German and Swedish institutes, realized with the main support of the Italian (ASI) and Russian (Roscosmos) Space Agencies.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>