Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catastrophic Flooding May Be More Predictable After Penn Researchers Build A Mini River Delta

17.03.2010
An interdisciplinary team of physicists and geologists led by the University of Pennsylvania has made a major step toward predicting where and how large floods occur on river deltas and alluvial fans.

In a laboratory, researchers created a miniature river delta that replicates flooding patterns seen in natural rivers, resulting in a mathematical model capable of aiding in the prediction of the next catastrophic flood.

The results appear in the current issue of Geophysical Research Letters.

Slow deposition of sediment within rivers eventually fills channels, forcing water to spill into surrounding areas and find a new, steeper path. The process is called avulsion. The result, with the proper conditions, is catastrophic flooding and permanent relocation of the river channel.

The goal of the Penn research was to improve prediction of why and where such flooding will occur and to determine how this avulsion process builds deltas and fans over geologic time.

Research was motivated by the Aug. 18, 2008, flooding of the Kosi River fan in northern India, where an artificial embankment was breached and the resulting floodwaters displaced more than a million people. Looking at satellite pictures, scientists from Penn and University of Minnesota Duluth noticed that floodwaters principally filled abandoned channel paths.

Meredith Reitz, lead author of the study and a graduate student in the Department of Physics and Astronomy in Penn’s School of Arts and Sciences, conducted a set of four laboratory experiments to study the avulsion process in detail. Reitz injected a mixture of water and sediment into a bathtub-sized tank and documented the formation and avulsion of river channels as they built a meter-sized delta.

“Reducing the scale of the system allows us to speed up time,” Reiz said. “We can observe processes in the lab that we could never see in nature.”

The laboratory experiments showed flooding patterns that were remarkably similar to the Kosi fan and revealed that flooding and channel relocation followed a repetitive cycle.

One major finding was that the formation of a river channel on a delta followed a random path; however, once a network of channels was formed, avulsion consistently returned flow to these same channels, rather than creating new ones. An additional important finding was that the average frequency of flooding was determined by how long it took to fill a channel with sediment. Researchers constructed a mathematical model incorporating these two ideas, which was able to reproduce the statistical behavior of flooding.

“Avulsions on river deltas and fans are like earthquakes,” said Douglas Jerolmack, director of the Sediment Dynamics Laboratory in the Department of Earth and Environmental Science at Penn and a co-author of the study. “It is impossible to predict exactly where and when they will occur, but we might be able to predict approximately how often they will occur and which areas are most vulnerable. Just as earthquakes occur along pre-existing faults, flooding occurs along pre-existing channel paths. If you want to know where floodwaters will go, find the old channels.”

The authors derived a simple method for estimating the recurrence interval of catastrophic flooding on real deltas. When used in conjunction with satellite images and topographic maps, this work will allow for enhanced flood hazard prediction. Such prediction is needed to protect the hundreds of millions of people who are threatened by flooding on river deltas and alluvial fans. The work could also help in exploration for oil reservoirs, because sandy river channels are an important source of hydrocarbons.

The study was funded by the National Science Foundation and was conducted by Reitz and Jerolmack at Penn and John Swenson of the University of Minnesota Duluth.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>