Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CAT scan reveals inner workings of volcano island

23.12.2008
On the ground and in the water, an international team of researchers has been collecting imaging data on the Soufriere Hills Volcano in Montserrat to understand the internal structure of the volcano and how and when it erupts.

"Using land-based measurement, we can see that over the time periods when the magma is erupting, the ground surface deflates into a bowl of subsidence and when the magma is sealed underground, the ground surface inflates like a balloon," says Barry Voight, professor emeritus of geosciences, Penn State. "The interesting thing is that much more magma is erupting than appears represented by the subsiding bowl."

Voight suggests a simple model to explain this discrepancy seen through the various eruptive phases and pauses of the volcano.

In 1995, Soufriere Hills volcano began the current series of eruptions and pauses, with each episode lasting from one to three years. The November 1995 event lasted until March 1998, during which time a thick dome of sticky andesite lava -- a volcanic rock -- grew continuously within the crater, punctuated by occasional and lethal explosions. From March 1998 until November 1999, there was a pause in above-ground volcanic activity and the lava dome collapsed from its own weight and inactivity.

Beginning in December 1999, the second eruptive episode continued until mid-July 2003 followed by a pause until October 2005. The third episode began then and ended in April 2007, followed by a pause, which still continues -- although, according to Voight, "a series of explosions started just a few days ago (early December) and this might mark the onset of the next eruptive period. We will need to wait and see if continuous lava extrusion follows."

The measurements taken during the on-going CALIPSO project, the ground-based phase of this study, uses Global Positioning Systems and strain meters to measure the exact up-and-down and sideways movements of numerous points over the volcano island. However, the volume changes represented by those measurements did not match measured volumes of the actual lava flows during the various eruption episodes, raising an intriguing puzzle.

The SEA CALIPSO project, involving a research consortium directed by Voight and S. Sparks, professor, earth sciences, University of Bristol, UK, used seismic waves caused by underwater air gun explosions at sea to map inside and under the volcano island in the same way as images inside the human body are revealed by a hospital CAT scan.

"In SEA-CALIPSO, we are using a variety of research tools to image the internal structure of the Earth's crust under the volcano island," says Voight. "Our knowledge of the deeper structure under any of the Caribbean Islands is very limited and the internal structure of an active volcano is one of the most puzzling questions in the Earth sciences. It is nearly impossible to get direct measurements inside the volcano, so we rely largely on remote sensing methods."

The researchers used seismic wave arrivals at over 200 land and sea floor seismometers to give CAT-scan like images of structure to about 5 miles deep. They were also able to map how the seismic energy bounces off key reflecting layers near the crust-mantle boundary, around 20 miles down. The basalt at those depths forms horizontal layers that partly crystallize and generate residual melts enriched in silica, water and sulfur. These melts rise in pulses to shallower levels, where they define magma chambers of andesite composition – the lava now erupting on Montserrat.

The researchers are able to image the location of these chambers by their pressure centers, which are approximately 6 miles deep and defined by continuously measured GPS surface stations.

Reporting in three sessions beginning today (Dec. 19), at the American Geophysical Union Conference in San Francisco, CALIPSO researchers discussed many aspects of the project. Voight's model of the Soufriere Hills Volcano accounts for the volume mismatch in erupted magma and ground movement by suggesting an elongated magma chamber beginning below 3 miles and centered about 6 miles beneath the mountain. This chamber fills with magma, but the magma already in the chamber is rich in water, carbon dioxide and sulfur dioxide gases, making it very compressible.

As the chamber fills, part of the new magma pushes against the chamber walls, elevating the island surface, as detected by GPS; but most of the magma fits into the existing space by squeezing the bubbly resident magma. When the volcano erupts, the magma stuffed into the chamber decompresses and the amount of magma erupted is greater than the amount implied by ground subsidence.

"The magma volume in Montserrat eruptions is much larger than anyone would estimate from the surface deformation, because of the elastic storage of magma in what is effectively a huge magma sponge," says Voight. "Magma is continually fed into the chamber from below at a rate of about two cubic meters per second -- about the volume of a large refrigerator every second."

In the long term, the magma released in the eruptive periods is approximately balanced by the accumulated input during the eruptive episode and the preceding inflation. There is no evident depletion of the chamber, so the eruption could be long lasting.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>