Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do the Caribbean Islands arc?

21.08.2012
Using earthquake data, USC earth scientists model the movement of the Earth to a depth of 3,000 km. and provide new insights into the strength of continents

The Caribbean islands have been pushed east over the last 50 million years, driven by the movement of the Earth's viscous mantle against the more rooted South American continent, reveals new research by geophysicists from USC.


This is a tectonic map of the southeastern Caribbean with shear-wave splitting measurements

Credit: Courtesy of Meghan Miller and Thorsten Becker

The results, published today in Nature Geoscience, give us a better understanding of how continents resist the constant movement of the Earth's plates – and what effect the continental plates have on reshaping the surface of the Earth.

"Studying the deep earth interior provides insights into how the Earth has evolved into its present form," said Meghan S. Miller, assistant professor of earth sciences in the USC Dornsife College of Letters, Arts and Sciences, and lead author of the paper. "We're interested in plate tectonics, and the southeastern Caribbean is interesting because it's right near a complex plate boundary."

Miller and Thorsten W. Becker, associate professor of earth sciences at USC Dornsife College, studied the margin between the Caribbean plate and the South American plate, ringed by Haiti, the Dominican Republic, Puerto Rico and a crescent of smaller islands including Barbados and St. Lucia.

But just like the First Law of Ecology (and time travel), when it comes to the earth, everything really is connected. So to study the motion of the South American continent and Caribbean plate, the researchers had to first model the entire planet – 176 models to be exact, so large that they took several weeks to compute even at the USC High Performance Computing Center.

For most of us, earthquakes are something to be dreaded. But for Miller and Becker they are a necessary source of data, providing seismic waves that can be tracked all over the world to provide an image of the Earth's deep interior like a CAT scan. The earthquake waves move slower or more quickly depending on the temperature and composition of the rock, and also depending on how the crystals within the rocks align after millions of years of being pushed around in mantle convection.

"If you can, you want to solve the whole system and then zoom in," Becker said. "What's cool about this paper is that we didn't just run one or two models. We ran a lot, and it allowed us to explore different possibilities for how mantle flow might work."

Miller and Becker reconstructed the movement of the Earth's mantle to a depth of almost 3,000 kilometers, upending previous hypotheses of the seismic activity beneath the Caribbean Sea and providing an important new look at the unique tectonic interactions that are causing the Caribbean plate to tear away from South America.

In particular, Miller and Becker point to a part of the South American plate – known as a "cratonic keel" – that is roughly three times thicker than normal lithosphere and much stronger than typical mantle. The keel deflects and channels mantle flow, and provides an important snapshot of the strength of the continents compared to the rest of the Earth's outer layers.

"Oceanic plates are relatively simple, but if we want to understand how the Earth works as a system – and how faults evolved and where the flow is going over millions of years – we also have to understand continental plates," Becker said.

In the southeastern Caribbean, the interaction of the subducted plate beneath the Antilles island arc with the stronger continental keel has created the El Pilar-San Sebastian Fault, and the researchers believe a similar series of interactions may have formed the San Andreas Fault.

"We're studying the Caribbean, but our models are run for the entire globe," Miller said. "We can look at similar features in Japan, Southern California and the Mediterranean, anywhere we have instruments to record earthquakes."

The research was funded by two National Science Foundation CAREER grants.

Meghan S. Miller and Thorsten W. Becker, "Mantle flow deflected by interactions between subducted slabs and cratonic keels," Nature Geoscience. DOI: 10.1038/NGEO1553.

Suzanne Wu | EurekAlert!
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>