Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Careful Sleuthing Reveals a Key Source of Sedimentation

Much of the Mississippi River's sediment load doesn't come from field runoff, according to work by scientists at the U.S. Department of Agriculture (USDA).

Instead, the scientists with USDA's Agricultural Research Service (ARS) have confirmed that stream bank collapse and failure can be chief contributors to high sediment levels in the silty streams and rivers that flow into the Mississippi. ARS is USDA's chief intramural scientific research agency.

The U.S. Environmental Protection Agency lists sediment as the most common pollutant of rivers, streams, lakes and reservoirs in the United States. Trapped sediment can reduce the useful lifespan of dams and reservoirs, exacerbate flooding, harm aquatic plants and animals, and transport other pollutants downstream. Over the years, billions of dollars have been spent on stream bank protection and restoration efforts to stem erosion and reduce sedimentation loads.

The source of this sediment load is often attributed to erosion and runoff from farm fields. But ARS hydrologist Glenn Wilson, who works at the agency's National Sedimentation Laboratory in Oxford, Miss., spent several years looking more closely at the causes of stream bank erosion. His studies focused on how seepage—the lateral movement of water through the ground—could prompt conditions that led to stream bank failure.

Wilson and others confirmed for the first time that a stable stream bank can quickly become unstable when seepage erosion is added to the mix of factors that promote bank failure. They found that seepage from stream banks was eroding layers of soil that subsequently would wash down the face of the stream bank and into the stream itself. This added to the sediment load in the stream and also left the bank itself weakened and vulnerable to collapse.

The researchers concluded that stream bank failure may stem as much—or more—from the effect of seepage erosion undercutting the stream banks as from the added weight of the waterlogged stream banks.

Results from this work were published in the Journal of Hydrologic Engineering and Earth Surface Processes and Landforms.

Read more about this research in the February 2011 issue of Agricultural Research magazine.

Ann Perry | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>