Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide – our salvation from a future ice age?

07.11.2012
Mankind’s emissions of fossil carbon and the resulting increase in temperature could prove to be our salvation from the next ice age.
According to a new research article by researchers from the University of Gothenburg, the current increase in the extent of peatland is having the opposite effect, cooling down the climate.

Looking back over the past three million years, the earth has experienced at least 30 periods of ice age, known as ice age pulses. The periods in between are called interglacials.

“We are probably entering a new ice age right now,” says researcher Lars Franzén, Professor of Physical Geography at the University of Gothenburg. “However, we’re not noticing it due to the effects of carbon dioxide.”

Professor Franzén and three other researchers have published their findings in the journal Mires and Peat.

The researchers believe that the Little Ice Age of the 16th to 18th centuries may have been halted as a result of human activity. Increased felling of woodlands and growing areas of agricultural land, combined with the early stages of industrialisation, resulted in increased emissions of carbon dioxide which probably slowed down, or even reversed, the cooling trend.

“It is certainly possible that mankind’s various activities contributed towards extending our ice age interval by keeping carbon dioxide levels high enough,” explains Professor Franzén. “Without the human impact, the inevitable progression towards an ice age would have continued. The spread of peatlands is an important factor.”

Peatlands act as carbon sinks, meaning that they absorb carbon dioxide from the atmosphere. They are a dynamic landscape element and currently cover around four percent of the earth’s land area. Most peatlands are found in temperate areas north and south of the 45th parallel.

Around 16 percent of Sweden is covered by peatland. Peatlands grow in height and spread across their surroundings by waterlogging woodlands. They are also one of the biggest terrestrial sinks of atmospheric carbon dioxide. Each year, around 20 grams of carbon are absorbed by every square metre of peatland.

“By using the National Land Survey of Sweden’s altitude database, we have calculated how much of Sweden could be covered by peatlands during an interglacial. We have taken a maximum terrain incline of three degrees as our upper limit, and have also excluded all lakes and areas with substrata that are unsuitable for peatland formation.”

The researchers found that around half of Sweden’s surface could be covered by peat. In such a case, the carbon dioxide sink would increase by a factor of between six and ten compared with the current situation.

“If we accept that rising levels of carbon dioxide in the atmosphere lead to an increase in global temperature, the logical conclusion must be that reduced levels lead to a drop in temperature.”

The relationship between carbon dioxide and temperature is not linear. Instead, lower levels result in a greater degree of cooling than the degree of warming achieved by a corresponding increase.

“There have been no emissions of fossil carbon during earlier interglacials. Carbon sequestration in peatland may therefore be one of the main reasons why ice age conditions have occurred time after time.”

Using calculations for Swedish conditions, the researchers are also producing a rough estimate of the global carbon sink effect if all temperate peatlands were to grow in the same way.

“Our calculations show that the peatlands could contribute towards global cooling equivalent to five watts per square metre. There is a great deal of evidence to suggest that we are near the end of the current interglacial.”

1. Franzén, L.G., F. Lindberg, V. Viklander & A. Walther (2012) The potential peatland extent and carbon sink in Sweden, as related to the Peatland / Ice Age Hypothesis. Mires and Peat 10(8):1-19.
Contact:
Lars Franzén, Professor of Physical Geography
Department of Earth Sciences, University of Gothenburg
+46 (0)31 786 1958, +46 (0)706 198267, lars@gvc.gu.se

Carina Eliasson | idw
Further information:
http://www.gu.se
http://www.mires-and-peat.net/map10/map_10_08.pdf

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>