Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide – our salvation from a future ice age?

07.11.2012
Mankind’s emissions of fossil carbon and the resulting increase in temperature could prove to be our salvation from the next ice age.
According to a new research article by researchers from the University of Gothenburg, the current increase in the extent of peatland is having the opposite effect, cooling down the climate.

Looking back over the past three million years, the earth has experienced at least 30 periods of ice age, known as ice age pulses. The periods in between are called interglacials.

“We are probably entering a new ice age right now,” says researcher Lars Franzén, Professor of Physical Geography at the University of Gothenburg. “However, we’re not noticing it due to the effects of carbon dioxide.”

Professor Franzén and three other researchers have published their findings in the journal Mires and Peat.

The researchers believe that the Little Ice Age of the 16th to 18th centuries may have been halted as a result of human activity. Increased felling of woodlands and growing areas of agricultural land, combined with the early stages of industrialisation, resulted in increased emissions of carbon dioxide which probably slowed down, or even reversed, the cooling trend.

“It is certainly possible that mankind’s various activities contributed towards extending our ice age interval by keeping carbon dioxide levels high enough,” explains Professor Franzén. “Without the human impact, the inevitable progression towards an ice age would have continued. The spread of peatlands is an important factor.”

Peatlands act as carbon sinks, meaning that they absorb carbon dioxide from the atmosphere. They are a dynamic landscape element and currently cover around four percent of the earth’s land area. Most peatlands are found in temperate areas north and south of the 45th parallel.

Around 16 percent of Sweden is covered by peatland. Peatlands grow in height and spread across their surroundings by waterlogging woodlands. They are also one of the biggest terrestrial sinks of atmospheric carbon dioxide. Each year, around 20 grams of carbon are absorbed by every square metre of peatland.

“By using the National Land Survey of Sweden’s altitude database, we have calculated how much of Sweden could be covered by peatlands during an interglacial. We have taken a maximum terrain incline of three degrees as our upper limit, and have also excluded all lakes and areas with substrata that are unsuitable for peatland formation.”

The researchers found that around half of Sweden’s surface could be covered by peat. In such a case, the carbon dioxide sink would increase by a factor of between six and ten compared with the current situation.

“If we accept that rising levels of carbon dioxide in the atmosphere lead to an increase in global temperature, the logical conclusion must be that reduced levels lead to a drop in temperature.”

The relationship between carbon dioxide and temperature is not linear. Instead, lower levels result in a greater degree of cooling than the degree of warming achieved by a corresponding increase.

“There have been no emissions of fossil carbon during earlier interglacials. Carbon sequestration in peatland may therefore be one of the main reasons why ice age conditions have occurred time after time.”

Using calculations for Swedish conditions, the researchers are also producing a rough estimate of the global carbon sink effect if all temperate peatlands were to grow in the same way.

“Our calculations show that the peatlands could contribute towards global cooling equivalent to five watts per square metre. There is a great deal of evidence to suggest that we are near the end of the current interglacial.”

1. Franzén, L.G., F. Lindberg, V. Viklander & A. Walther (2012) The potential peatland extent and carbon sink in Sweden, as related to the Peatland / Ice Age Hypothesis. Mires and Peat 10(8):1-19.
Contact:
Lars Franzén, Professor of Physical Geography
Department of Earth Sciences, University of Gothenburg
+46 (0)31 786 1958, +46 (0)706 198267, lars@gvc.gu.se

Carina Eliasson | idw
Further information:
http://www.gu.se
http://www.mires-and-peat.net/map10/map_10_08.pdf

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>