Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From candy floss to rock: study provides new evidence about beginnings of the solar system

The earliest rocks in our Solar System were more like candy floss than the hard rock that we know today, according to research published today in the journal Nature Geoscience.

The work, by researchers from Imperial College London and other international institutions, provides the first geological evidence to support previous theories, based on computer models and lab experiments, about how the earliest rocks were formed.

The study adds weight to the idea that the first solid material in the Solar System was fragile and extremely porous – much like candy floss – and that it was compacted during periods of extreme turbulence into harder rock, forming the building blocks that paved the way for planets like Earth.

Dr Phil Bland, lead author of the study from the Department of Earth Science and Engineering at Imperial College London, says:

"Our study makes us even more convinced than before that the early carbonaceous chondrite rocks were shaped by the turbulent nebula through which they travelled billions of years ago, in much the same way that pebbles in a river are altered when subjected to high turbulence in the water. Our research suggests that the turbulence caused these early particles to compact and harden over time to form the first tiny rocks."

The researchers reached their conclusions after carrying out an extremely detailed analysis of an asteroid fragment known as a carbonaceous chondrite meteorite, which came from the asteroid belt between Jupiter and Mars. It was originally formed in the early Solar System when microscopic dust particles collided with one another and stuck together, coalescing around larger grain particles called chondrules, which were around a millimetre in size.

To analyse the carbonaceous chondrite sample, the team used an electron back-scatter defraction technique, which fires electrons at the sample. Researchers observe the resulting interference pattern using a microscope to study the structures within. This technique enabled the researchers to study the orientation and position of individual micrometre-sized grain particles that had coalesced around the chondrule. They found that the grains coated the chondrule in a uniform pattern, which they deduced could only occur if this tiny rock was subjected to shocks in space, possibly during these periods of turbulence.

The team also defined a new method to quantify the amount of compression that the rock had experienced and deduce the rock's original fragile structure.

Dr Bland adds: "What's exciting about this approach is that it allows us – for the first time – to quantitatively reconstruct the accretion and impact history of the most primitive solar system materials in great detail. Our work is another step in the process helping us to see how rocky planets and moons that make up parts of our Solar System came into being."

In the future, the team will focus further studies on how the earliest asteroids were built.

This research was funded by the Science and Technology Facilities Council.

Notes to Editors:

1. "Earliest rock fabric formed in the Solar System preserved in chondrule rim" Nature Geoscience, Sunday 27 March 2011.

The full listing of authors and their affiliations for this paper is as follows:

Philip A. Bland [1,2,3], Lauren E. Howard [2], David J. Prior [4], John Wheeler [5], Robert M. Hough [6] and Kathryn A. Dyl [1]

[1] Impacts and Astromaterials Research Centre (IARC), Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK [2] IARC, Department of mineralogy, Natural History Museum, London SW7 5BD, UK [3] Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth Western Australia 6845, Australia [4] Department of Geology, University of Otago, 360 Leith Walk, PO Box 56, Dunedin, Otago 9054, New Zealand [5] Department of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK [6] CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington, Perth Western Australia 6151, Australia

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Colin Smith | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>