Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even Canadian rocks are different

29.03.2011
Sedimentary differences on either side of border date back 120 million years

Canadians have always seen themselves as separate and distinct from their American neighbours to the south, and now they have geological proof.

New research published in April's edition of Geology shows that rock formations roughly along the same political boundary as the two North American countries formed as early as 120 million years ago.

Dr. Andrew Leier, of the Department of Geoscience at the University of Calgary, set out to prove what he thought was the obvious: because the mountains are continuous between the U.S. and Canada, the ancient river systems that flowed from these uplands were likely interconnected. In other words, during Cretaceous Period,120 million years ago, rivers should have flowed north and south between the countries, paying no mind to the modern day political border.

"I thought that I could easily show that in my research," says Leier who published a paper in Geology with co-author Dr. George Gehrels at the University of Arizona and, Leier adds, a lot of help from Cassandra Frosini, an undergraduate in geoscience at the University of Calgary.

But Leier was wrong. "I was surprised to learn the opposite, in fact, was true," he says.

A tiny piece of sediment found in sandstone called zircon helped the researchers locate where the sediments had originally formed. Knowing its current location, Leier was able to determine just how far the rivers moved it and the direction from which it came.

During the Cretaceous Period, mountains were being created all along western North America, in both Canada and the United States.

"I thought the sediment transported by ancient rivers in Montana and Utah would flow out of the mountain ranges and then north into Alberta. This is similar with how the Ganges River runs parallel to the Himalayas. Our research shows this wasn't the case," says Leier.

Leier and Gehrels used recently developed laser-based techniques to reconstruct the origin of individual sand grains that were deposited during this period in western North America. This technique has applications to the petroleum industry as well, where it can be used to aide in determining drilling locations.

Researchers found slightly different rocks, when eroded, produced slightly different zircons.

"Cretaceous sediment in the United States have a clear American signature; whereas those in the Canadian Rockies have a different and definable Canadian signature," says Leier.

"The demarcation is pretty much coincidental with the modern day border."

Also the implication of the data suggests that the rivers that flowed west to east from the mountains in the United States stayed in the United States, and those in Canada stayed in Canada.

"In other words, there is no evidence that rivers in western North America were crossing what is today the border," says Leier.

The paper, Continental-scale detrital zircon provenance signatures in Lower Cretaceous strata, western North America, published in Geology is by Andrew Leier, Department of Geoscience, University of Calgary and George Gehrels, Department of Geosciences, University of Arizona.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>