Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists find new primitive mineral in meteorite

27.06.2012
In 1969, an exploding fireball tore through the sky over Mexico, scattering thousands of pieces of meteorite across the state of Chihuahua.

More than 40 years later, the Allende meteorite is still serving the scientific community as a rich source of information about the early stages of our solar system's evolution. Recently, scientists from the California Institute of Technology (Caltech) discovered a new mineral embedded in the space rock—one they believe to be among the oldest minerals formed in the solar system.

Dubbed panguite, the new titanium oxide is named after Pan Gu, the giant from ancient Chinese mythology who established the world by separating yin from yang to create the earth and the sky. The mineral and the mineral name have been approved by the International Mineralogical Association's Commission on New Minerals, Nomenclature and Classification. A paper outlining the discovery and the properties of this new mineral will be published in the July issue of the journal American Mineralogist, and is available online now.

"Panguite is an especially exciting discovery since it is not only a new mineral, but also a material previously unknown to science," says Chi Ma, a senior scientist and director of the Geological and Planetary Sciences division's Analytical Facility at Caltech and corresponding author on the paper.

The Allende meteorite is the largest carbonaceous chondrite—a diverse class of primitive meteorites—ever found on our planet and is considered by many the best-studied meteorite in history. As a result of an ongoing nanomineralogy investigation of primitive meteorites—which Ma has been leading since 2007—nine new minerals, including panguite, have been found in the Allende meteorite. Some of those new finds include the minerals allendeite, hexamolybdenum, tistarite, and kangite. Nanomineralogy looks at tiny particles of minerals and the minuscule features within those minerals.

"The intensive studies of objects in this meteorite have had a tremendous influence on current thinking about processes, timing, and chemistry in the primitive solar nebula and small planetary bodies," says coauthor George Rossman, the Eleanor and John R. McMillan Professor of Mineralogy at Caltech.

Panguite was observed first under a scanning electron microscope in an ultra-refractory inclusion embedded in the meteorite. Refractory inclusions are among the first solid objects formed in our solar system, dating back to before the formation of Earth and the other planets. "Refractory" refers to the fact that these inclusions contain minerals that are stable at high temperatures and in extreme environments, which attests to their likely formation as primitive, high-temperature liquids produced by the solar nebula.

According to Ma, studies of panguite and other newly discovered refractory minerals are continuing in an effort to learn more about the conditions under which they formed and subsequently evolved. "Such investigations are essential to understand the origins of our solar system," he says.

Additional authors on the American Mineralogist paper, "Panguite, (Ti4+,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD," are John R. Beckett, senior research scientist at Caltech; Oliver Tschauner from the University of Nevada–Las Vegas; and Wenjun Liu from the Argonne National Laboratory. The study was supported through grants from the National Science Foundation, the U.S. Department of Energy, and NASA's Office of Space Science.

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>