Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech-led team debunks theory on end of 'Snowball Earth' ice age

27.05.2011
Finds that rocks used as key geologic evidence were formed deep within Earth millions of years after the ice age ended

There's a theory about how the Marinoan ice age—also known as the "Snowball Earth" ice age because of its extreme low temperatures—came to an abrupt end some 600 million years ago. It has to do with large amounts of methane, a strong greenhouse gas, bubbling up through ocean sediments and from beneath the permafrost and heating the atmosphere.

The main physical evidence behind this theory has been samples of cap dolostone from south China, which were known to have a lot less of the carbon-13 isotope than is normally found in these types of carbonate rocks. (Dolostone is a type of sedimentary rock composed of the carbonate mineral, dolomite; it's called cap dolostone when it overlies a glacial deposit.) The idea was that these rocks formed when Earth-warming methane bubbled up from below and was oxidized—"eaten"—by microbes, with its carbon wastes being incorporated into the dolostone, thereby leaving a signal of what had happened to end the ice age. The idea made sense, because methane also tends to be low in carbon-13; if carbon-13-depeleted methane had been made into rock, that rock would indeed also be low in carbon-13. But the idea was controversial, too, since there had been no previous isotopic evidence in carbonate rock of methane-munching microbes that early in Earth's history.

And, as a team of scientists led by researchers from the California Institute of Technology (Caltech) report in this week's issue of the journal Nature, it was also wrong—at least as far as the geologic evidence they looked at goes. Their testing shows that the rocks on which much of that ice-age-ending theory was based were formed millions of years after the ice age ended, and were formed at temperatures so high there could have been no living creatures associated with them.

"Our findings show that what happened in these rocks happened at very high temperatures, and abiologically," says John Eiler, the Robert P. Sharp Professor of Geology and professor of geochemistry at Caltech, and one of the paper's authors. "There is no evidence here that microbes ate methane as food. The story you see in this rock is not a story about ice ages."

To tell the rocks' story, the team used a technique Eiler developed at Caltech that looks at the way in which rare isotopes (like the carbon-13 in the dolostone) group, or "clump," together in crystalline structures like bone or rock. This clumping, it turns out, is highly dependent upon the temperature of the immediate environment in which the crystals form. Hot temperatures mean less clumping; low temperatures mean more.

"The rocks that we analyzed for this study have been worked on before," says Thomas Bristow, the paper's first author and a former postdoc at Caltech who is now at NASA Ames Research Center, "but the unique advance available and developed at Caltech is the technique of using carbonate clumped-isotopic thermometry to study the temperature of crystallization of the samples. It was primarily this technique that brought new insights regarding the geological history of the rocks."

What the team's thermometer made very clear, says Eiler, is that "the carbon source was not oxidized and turned into carbonate at Earth's surface. This was happening in a very hot hydrothermal environment, underground."

In addition, he says, "We know it happened at least millions of years after the ice age ended, and probably tens of millions. Which means that whatever the source of carbon was, it wasn't related to the end of the ice age."

Since this rock had been the only carbon-isotopic evidence of a Precambrian methane seep, these findings bring up a number of questions—questions not just about how the Marinoan ice age ended, but about Earth's budget of methane and the biogeochemistry of the ocean.

"The next stage of the research is to delve deeper into the question of why carbon-13-depleted carbonate rocks that formed at methane seeps seem to only be found during the later 400 million years of Earth history," says John Grotzinger, the Fletcher Jones Professor of Geology at Caltech and the principal investigator on the work described. "It is an interesting fact of the geologic record that, despite a well-preserved record of carbonates beginning 3.5 billion years ago, the first 3 billion years of Earth history does not record evidence of methane oxidation. This is a curious absence. We think it might be linked to changes in ocean chemistry through time, but more work needs to be done to explore that."

In addition to Bristow, Eiler, and Grotzinger, the other authors on the Nature paper, "A hydrothermal origin for isotopically anomalous cap dolostone cements from south China," are Magali Bonifacie, a former Caltech postdoc now at the Institut de Physique du Globe de Paris, and Arkadiusz Derkowski from the Polish Academy of Sciences in Krakow.

The work was supported by an O. K. Earl Postdoctoral Fellowship, by the National Science Foundation's Division of Earth Sciences and its Geobiology and Environmental Geochemistry program, and by CNRS-INSU (French research agency).

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>