Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California’s Central Valley sees big drop in wintertime fog needed for fruit and nut crops

21.05.2014

California’s winter tule fog — hated by drivers, but needed by fruit and nut trees — has declined dramatically over the past three decades, raising a red flag for the state’s multibillion dollar agricultural industry, according to new research.

Crops such as almonds, pistachios, cherries, apricots and peaches go through a necessary winter dormant period brought on and maintained by colder temperatures. Tule fog, a thick ground fog that descends upon the state’s Central Valley between late fall and early spring, helps contribute to this winter chill.


Tule fog drifts through a walnut orchard south of Meridian, along the Sacramento River.

Copyright Anthony Dunn Photography. For reprint permission, go to http://www.adunnphotography.com/


A satellite image shows a thick bank of fog blanketing the Central Valley of California. A new study finds that tule fog, a thick ground fog that descends upon the Central Valley between late fall and early spring, has declined dramatically over the past three decades.

Credit: NASA

“The trees need this dormant time to rest so that they can later develop buds, flowers and fruit during the growing season,” said University of California, Berkeley biometeorologist and study lead author Dennis Baldocchi, whose father grew almonds and walnuts in Antioch and Oakley. “An insufficient rest period impairs the ability of farmers to achieve high quality fruit yields.”

The study, published May 15 in the journal Geophysical Research Letters, a journal of the American Geophysical Union, has implications for the entire country since many of these California crops account for 95 percent of U.S. production, the authors noted.

... more about:
»AGU »Environmental »Geophysical »crops »nut »temperature

The researchers paired NASA and National Oceanic and Atmospheric Administration satellite records with data from a network of University of California weather stations, covering 32 consecutive winters. There was a great deal of variability from year to year, but on average, the researchers found a 46 percent drop in the number of fog days between the first of November and the end of February.

“The year-to-year variability we saw was likely influenced by whether the season was relatively wet or dry,” said Baldocchi, a professor in UC Berkeley’s Department of Environmental Science, Policy and Management. “Generally, when conditions are too dry or too wet, we get less fog. If we’re in a drought, there isn’t enough moisture to condense in the air. During wet years, we need the rain to stop so that the fog can form.”

Other studies have marked the decline in the Central Valley of winter chill – the number of hours between 0 and 7 degrees Celsius (32 and 45 degrees Fahrenheit). The number of hours of winter chill has dropped by several hundred since the 1950s, the study authors noted.

But ambient air temperature alone may not adequately reflect the heat experienced by the crops, said Baldocchi. Direct sunlight can heat the buds so that they are warmer than the surrounding air temperature. As a result, fog is important in shielding the buds from the sun and helping them accumulate winter chill.

Climate forecasts suggest that the accumulation of winter chill will continue to decrease in the Central Valley. Baldocchi said that fruit developers are already trying to develop cultivars that can tolerate less winter chill.

“Farmers may also need to consider adjusting the location of orchards to follow the fog, so to speak,” said Baldocchi. “Some regions along the foothills of the Sierra are candidates, for instance. That type of change is a slow and difficult process, so we need to start thinking about this now.”

The study was co-authored by Eric Waller, a UC Berkeley Ph.D. student in the Department of Environmental Science, Policy and Management. The California Energy Commission supported this research.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL060018/abstract

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Winter fog is decreasing in the fruit growing region of the Central Valley of California”

Authors:
Dennis Baldocchi and Eric Waller: Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA.

Contact information for the authors:
Dennis Baldocchi: +1 (510) 642-2874, baldocchi@berkeley.edu.

AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of California Berkeley Contact:
Sarah Yang
+1 (510) 643-7741
scyang@berkeley.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/californias-central-valley-sees-big-drop-in-wintertime-fog-needed-for-fruit-and-nut-crops/

Further reports about: AGU Environmental Geophysical crops nut temperature

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>