Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California’s Central Valley sees big drop in wintertime fog needed for fruit and nut crops

21.05.2014

California’s winter tule fog — hated by drivers, but needed by fruit and nut trees — has declined dramatically over the past three decades, raising a red flag for the state’s multibillion dollar agricultural industry, according to new research.

Crops such as almonds, pistachios, cherries, apricots and peaches go through a necessary winter dormant period brought on and maintained by colder temperatures. Tule fog, a thick ground fog that descends upon the state’s Central Valley between late fall and early spring, helps contribute to this winter chill.


Tule fog drifts through a walnut orchard south of Meridian, along the Sacramento River.

Copyright Anthony Dunn Photography. For reprint permission, go to http://www.adunnphotography.com/


A satellite image shows a thick bank of fog blanketing the Central Valley of California. A new study finds that tule fog, a thick ground fog that descends upon the Central Valley between late fall and early spring, has declined dramatically over the past three decades.

Credit: NASA

“The trees need this dormant time to rest so that they can later develop buds, flowers and fruit during the growing season,” said University of California, Berkeley biometeorologist and study lead author Dennis Baldocchi, whose father grew almonds and walnuts in Antioch and Oakley. “An insufficient rest period impairs the ability of farmers to achieve high quality fruit yields.”

The study, published May 15 in the journal Geophysical Research Letters, a journal of the American Geophysical Union, has implications for the entire country since many of these California crops account for 95 percent of U.S. production, the authors noted.

... more about:
»AGU »Environmental »Geophysical »crops »nut »temperature

The researchers paired NASA and National Oceanic and Atmospheric Administration satellite records with data from a network of University of California weather stations, covering 32 consecutive winters. There was a great deal of variability from year to year, but on average, the researchers found a 46 percent drop in the number of fog days between the first of November and the end of February.

“The year-to-year variability we saw was likely influenced by whether the season was relatively wet or dry,” said Baldocchi, a professor in UC Berkeley’s Department of Environmental Science, Policy and Management. “Generally, when conditions are too dry or too wet, we get less fog. If we’re in a drought, there isn’t enough moisture to condense in the air. During wet years, we need the rain to stop so that the fog can form.”

Other studies have marked the decline in the Central Valley of winter chill – the number of hours between 0 and 7 degrees Celsius (32 and 45 degrees Fahrenheit). The number of hours of winter chill has dropped by several hundred since the 1950s, the study authors noted.

But ambient air temperature alone may not adequately reflect the heat experienced by the crops, said Baldocchi. Direct sunlight can heat the buds so that they are warmer than the surrounding air temperature. As a result, fog is important in shielding the buds from the sun and helping them accumulate winter chill.

Climate forecasts suggest that the accumulation of winter chill will continue to decrease in the Central Valley. Baldocchi said that fruit developers are already trying to develop cultivars that can tolerate less winter chill.

“Farmers may also need to consider adjusting the location of orchards to follow the fog, so to speak,” said Baldocchi. “Some regions along the foothills of the Sierra are candidates, for instance. That type of change is a slow and difficult process, so we need to start thinking about this now.”

The study was co-authored by Eric Waller, a UC Berkeley Ph.D. student in the Department of Environmental Science, Policy and Management. The California Energy Commission supported this research.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL060018/abstract

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Winter fog is decreasing in the fruit growing region of the Central Valley of California”

Authors:
Dennis Baldocchi and Eric Waller: Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA.

Contact information for the authors:
Dennis Baldocchi: +1 (510) 642-2874, baldocchi@berkeley.edu.

AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of California Berkeley Contact:
Sarah Yang
+1 (510) 643-7741
scyang@berkeley.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/californias-central-valley-sees-big-drop-in-wintertime-fog-needed-for-fruit-and-nut-crops/

Further reports about: AGU Environmental Geophysical crops nut temperature

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>