Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like butter: Study explains surprising acceleration of Greenland’s inland ice

18.07.2013
Surface meltwater draining through cracks in an ice sheet can warm the sheet from the inside, softening the ice and letting it flow faster, a new study finds.

During the last decade, researchers have captured compelling evidence of accelerating ice flow at terminal regions, or "snouts," of Greenland glaciers as they flow into the ocean along the western coast. Now, the new research shows that the interior regions are also flowing much faster than they were in the winter of 2000-2001, and the study authors propose a reason for the speedup.


Meltwater from the surface of the Sermeq Avannarleq Glacier drains down toward interior ice (see falling droplets at right). This photograph depicts a region about 16 kilometers (10 miles) from the ice sheet margin in Southwest Greenland. CREDIT: William Colgan/CIRES

"Through satellite observations, we determined that an inland region of the Sermeq Avannarleq Glacier, 40 to 60 miles from the coast, is flowing about 1.5 times faster than it was about a decade ago," said Thomas Phillips, lead author of the new paper and a research associate at the time of the study with the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado, Boulder.

In 2000-2001, the inland segment was flowing at about 40 meters (130 feet) per year; in 2007-2008, that speed was closer to 60 meters (200 feet) per year.

"At first, we couldn't explain this rapid interior acceleration," Phillips said. "We knew it wasn't related to what was going on at the glacier's terminus. The speedup had to be due to changes within the ice itself."

To shed light on the observed acceleration, Phillips and his team developed a new model to investigate the effects of meltwater on the ice sheet's physical properties. The team found that meltwater warms the ice sheet, which then—like a warm stick of butter—softens, deforms, and flows faster.

Previous studies estimated that it would take centuries to millennia for new climates to increase the temperature deep within ice sheets. But when the influence of meltwater is considered, warming can occur within decades and, thus, produce rapid accelerations. The paper has been accepted for publication in the Journal of Geophysical Research: Earth Surface, a journal of the American Geophysical Union.

The researchers were tipped off to this mechanism by the massive amount of meltwater they observed on the ice sheet's surface during their summer field campaigns, and they wondered if it was affecting the ice sheet. During the last several decades, atmospheric warming above the Greenland Ice Sheet has caused an expanding area of the surface to melt during the summer, creating pools of water that gush down cracks in the ice. The meltwater eventually funnels to the interior and bed of the ice sheet.

As the meltwater drains through the ice, it carries with it heat from the sun.

"The sun melts ice into water at the surface, and that water then flows into the ice sheet carrying a tremendous amount of latent energy," said William Colgan, a coauthor and CIRES adjunct research associate. "The latent energy then heats the ice."

The new model shows that this speeds up ice flow in two major ways: One, the retained meltwater warms the bed of the ice sheet and preconditions it to accommodate a basal water layer, making it easier for the ice sheet to slide by lubrication. Two, warmer ice is also softer (less viscous), which makes it flow more readily.

"Basically, the gravitational force driving the ice sheet flow hasn't changed over time, but with the ice sheet becoming warmer and softer, that same gravitational force now makes the ice flow faster," Colgan said.

This transformation from stiff to soft only requires a little bit of extra heat from meltwater. "The model shows that a slight warming of the ice near the ice sheet bed—only a couple of degrees Celsius—is sufficient to explain the widespread acceleration," Colgan said.

The findings have important ramifications for ice sheets and glaciers everywhere. "It could imply that ice sheets can discharge ice into the ocean far more rapidly than currently estimated," Phillips said. "It also means that the glaciers are not finished accelerating and may continue to accelerate for a while. As the area experiencing melt expands inland, the acceleration may be observed farther inland."

The study's results suggest that to understand future sea-level rise, scientists need to account for a previously overlooked factor—meltwater's latent energy—and its potential role in making glaciers and ice sheets flow faster into the world's oceans. In 2007, the Intergovernmental Panel on Climate Change (IPCC) wrote that one of the most significant challenges in predicting sea-level rise was "limited" understanding of the processes controlling ice flow. The IPCC's next assessment is due out in 2014.

"Traditionally, latent energy has been considered a relatively unimportant factor, but most glaciers are now receiving far more meltwater than they used to and are increasing in temperature faster than previously imagined," Colgan said. "The chunk of butter known as the Greenland Ice Sheet may be softening a lot faster than we previously thought possible."

The study was funded through a NASA ROSES grant, NASA's Greenland Climate Network, and the National Science Foundation. Other coauthors on the paper were CIRES Director Waleed Abdalati, former CIRES Director Konrad Steffen, and CU-Boulder Engineering Professor Harihar Rajaram.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/jgrf.20079/abstract

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at PWeiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
"Evaluation of cryo-hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland"
Authors:
Thomas PhillipsCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA; and Colorado Center for Astrodynamics Research, University of Colorado, Boulder, USA;Harihar RajaramDepartment of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, USA;William ColganCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA; and Geological Survey of Denmark and Greenland, Copenhagen, Denmark;Konrad SteffenCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA; and Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland;Waleed AbdalatiCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA.

Contact information for the authors:

Thomas Phillips, Thomas.Phillips@Colorado.EDU, +41 79 120 0858, Thomas.Phillips (Skype)

William Colgan, colgan@colorado.edu, +45 38 14 29 30

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org/news/press/pr_archives/2013/2013-35.shtml

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>