Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Busy microbial world discovered in deepest ocean crust ever explored

22.11.2010
The first study to ever explore biological activity in the deepest layer of ocean crust has found bacteria with a remarkable range of capabilities, including eating hydrocarbons and natural gas, and "fixing" or storing carbon.

The research, just published in the journal PLoS One, showed that a significant number and amount of bacterial forms were present, even in temperatures near the boiling point of water.

"This is a new ecosystem that almost no one has ever explored," said Martin Fisk, a professor in the College of Oceanic and Atmospheric Sciences at Oregon State University. "We expected some bacterial forms, but the long list of biological functions that are taking place so deep beneath the Earth is surprising."

Oceanic crust covers about 70 percent of the surface of the Earth and its geology has been explored to some extent, but practically nothing is known about its biology – partly because it's difficult and expensive, and partly because most researchers had assumed not all that much was going on.

The temperature of the sediments and rock increases with depth, and scientists now believe that the upper temperature at which life can exist is around 250 degrees. The ocean floor is generally composed of three levels, including a shallow layer of sediment; basalt formed from solidified magma; and an even deeper level of basalt that cooled more slowly and is called the "gabbro" layer, which forms the majority of ocean crust.

The gabbro layer doesn't even begin until the crust is about two miles thick. But at a site in the Atlantic Ocean near an undersea mountain, the Atlantis Massif, core samples were obtained from gabbro rock formations that were closer to the surface than usual because they had been uplifted and exposed by faulting. This allowed the researchers to investigate for the first time the microbiology of these rocks.

A research expedition drilled more than 4,600 feet into this formation, into rock that was very deep and very old, and found a wide range of biological activity. Microbes were degrading hydrocarbons, some appeared to be capable of oxidizing methane, and there were genes active in the process of fixing, or converting from a gas, both nitrogen and carbon.

The findings are of interest, in part, because little is known about the role the deep ocean crust may play in carbon storage and fixation. Increasing levels of carbon dioxide, a greenhouse gas when in the atmosphere, in turn raise the levels of carbon dioxide in the oceans.

But it now appears that microbes in the deep ocean crust have at least a genetic potential for carbon storage, the report said. And it may lend credence to one concept for reducing carbon emissions in the atmosphere, by pumping carbon dioxide into deep subsurface layers where it might be sequestered permanently.

The researchers also noted that methane found on Mars could be derived from geological sources, and concluded that subsurface environments on Mars where methane is produced could support bacteria like those found in this study.

"These findings don't offer any easy or simple solutions to some of the environmental issues that are of interest to us on Earth, such as greenhouse warming or oil spill pollution," Fisk said. "However, they do indicate there's a whole world of biological activity deep beneath the ocean that we don't know much about, and we need to study."

Microbial processes in this expansive subseafloor environment "have the potential to significantly influence the biogeochemistry of the ocean and the atmosphere," the researchers wrote in their report.

The research was supported by the National Science Foundation, U.S. Department of Energy, Gordon and Betty Moore Foundation, and the Integrated Ocean Drilling Program. Collaborators were from OSU, the Lawrence Berkeley National Laboratory, Tohoku University in Japan, Universitat Bremen in Germany, University of Oklahoma, and National Institute of Advanced Industrial Science and Technology in Japan.

Editor's Note: A digital image of the undersea Atlantis Massif is available online: http://www.flickr.com/photos/oregonstateuniversity/5189591907/

About Oregon State University: OSU is one of only two U.S. universities designated a land-, sea-, space- and sun-grant institution. OSU is also Oregon's only university designated in the Carnegie Foundation's top tier for research institutions, garnering more than 60 percent of the total federal and private research funding in the Oregon University System. Its nearly 24,000 students come from all 50 states and more than 90 countries. OSU programs touch every county within Oregon, and its faculty teach and conduct research on issues of national and global importance.

Martin Fisk | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>