Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Busy microbial world discovered in deepest ocean crust ever explored

22.11.2010
The first study to ever explore biological activity in the deepest layer of ocean crust has found bacteria with a remarkable range of capabilities, including eating hydrocarbons and natural gas, and "fixing" or storing carbon.

The research, just published in the journal PLoS One, showed that a significant number and amount of bacterial forms were present, even in temperatures near the boiling point of water.

"This is a new ecosystem that almost no one has ever explored," said Martin Fisk, a professor in the College of Oceanic and Atmospheric Sciences at Oregon State University. "We expected some bacterial forms, but the long list of biological functions that are taking place so deep beneath the Earth is surprising."

Oceanic crust covers about 70 percent of the surface of the Earth and its geology has been explored to some extent, but practically nothing is known about its biology – partly because it's difficult and expensive, and partly because most researchers had assumed not all that much was going on.

The temperature of the sediments and rock increases with depth, and scientists now believe that the upper temperature at which life can exist is around 250 degrees. The ocean floor is generally composed of three levels, including a shallow layer of sediment; basalt formed from solidified magma; and an even deeper level of basalt that cooled more slowly and is called the "gabbro" layer, which forms the majority of ocean crust.

The gabbro layer doesn't even begin until the crust is about two miles thick. But at a site in the Atlantic Ocean near an undersea mountain, the Atlantis Massif, core samples were obtained from gabbro rock formations that were closer to the surface than usual because they had been uplifted and exposed by faulting. This allowed the researchers to investigate for the first time the microbiology of these rocks.

A research expedition drilled more than 4,600 feet into this formation, into rock that was very deep and very old, and found a wide range of biological activity. Microbes were degrading hydrocarbons, some appeared to be capable of oxidizing methane, and there were genes active in the process of fixing, or converting from a gas, both nitrogen and carbon.

The findings are of interest, in part, because little is known about the role the deep ocean crust may play in carbon storage and fixation. Increasing levels of carbon dioxide, a greenhouse gas when in the atmosphere, in turn raise the levels of carbon dioxide in the oceans.

But it now appears that microbes in the deep ocean crust have at least a genetic potential for carbon storage, the report said. And it may lend credence to one concept for reducing carbon emissions in the atmosphere, by pumping carbon dioxide into deep subsurface layers where it might be sequestered permanently.

The researchers also noted that methane found on Mars could be derived from geological sources, and concluded that subsurface environments on Mars where methane is produced could support bacteria like those found in this study.

"These findings don't offer any easy or simple solutions to some of the environmental issues that are of interest to us on Earth, such as greenhouse warming or oil spill pollution," Fisk said. "However, they do indicate there's a whole world of biological activity deep beneath the ocean that we don't know much about, and we need to study."

Microbial processes in this expansive subseafloor environment "have the potential to significantly influence the biogeochemistry of the ocean and the atmosphere," the researchers wrote in their report.

The research was supported by the National Science Foundation, U.S. Department of Energy, Gordon and Betty Moore Foundation, and the Integrated Ocean Drilling Program. Collaborators were from OSU, the Lawrence Berkeley National Laboratory, Tohoku University in Japan, Universitat Bremen in Germany, University of Oklahoma, and National Institute of Advanced Industrial Science and Technology in Japan.

Editor's Note: A digital image of the undersea Atlantis Massif is available online: http://www.flickr.com/photos/oregonstateuniversity/5189591907/

About Oregon State University: OSU is one of only two U.S. universities designated a land-, sea-, space- and sun-grant institution. OSU is also Oregon's only university designated in the Carnegie Foundation's top tier for research institutions, garnering more than 60 percent of the total federal and private research funding in the Oregon University System. Its nearly 24,000 students come from all 50 states and more than 90 countries. OSU programs touch every county within Oregon, and its faculty teach and conduct research on issues of national and global importance.

Martin Fisk | EurekAlert!
Further information:
http://www.oregonstate.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>