Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Burtele Foot Indicates Lucy Not Alone

03.04.2012
Discovery of partial foot skeleton could mean hominin species lived side by side

A new fossil discovery from Eastern Africa called the Burtele foot indicates Australopithecus afarensis, an early relative of modern humans, may not have been the only hominin to walk the plains and woodlands of what is now the Afar region of Ethiopia some 3.4 million years ago.

Researchers openly have questioned whether Au. afarensis, the species to which the famous fossil "Lucy" belongs, was the only living hominin during the late Pliocene of Africa. Lucy's bones provided evidence that she and perhaps other early hominins may have walked upright, but whether or not she was the sole hominin species in her particular geologic time scale has been the subject of much debate.

"There was indeed more than one early hominin species during that time," said Yohannes Haile-Selassie, head of Physical Anthropology at the Cleveland Museum of Natural History and lead author of the findings.

Haile-Selassie and a team of anthropologists and geologists report finding the partial skeleton of a foot that belonged to an early human ancestor that was neither Au. afarensis nor another hominin called Kenyanthropus platyops, a creature that some paleoanthropologists argue was a second hominin that lived at the same time as Au. afarensis.

The journal Nature published the finding today. The National Science Foundation's (NSF) Division of Behavioral and Cognitive Sciences partially funded the research.

Descriptions of Kenyanthropus platyops led some scientists to dispute whether only one hominin inhabited Africa's upper regions 3.9 to 2.9 million years ago mainly due to the distorted nature of the specimen used as the basis for the original published description of Kenyanthropus platyops, said Haile-Selassie.

"Tim White, (a member of the research team who began uncovering Lucy in 1973), argued that Kenyanthropus platyops is a Kenyan version of Australopithecus afarensis and that the subtle differences between the two could be subsumed into an intra-specific variation."

In other words, he argued there was no evidence a second hominin roamed the landscape during the time of Au. afarensis. But Haile-Selassie and his team may have found proof of at least two hominin species.

In Woranso-Mille, a relatively new palaeontological site located in the central Afar region of Ethiopia, researchers dug up a 3.4 million year old partial foot skeleton that does not match the contemporaneous Au. afarensis in form or shape.

Moreover, the skeletal remains infer locomotor adaptations more similar to an earlier, 4.4 million year old hominin, Ardipithecus ramidus, that was discovered by a research team led by White in 1992-1993 in the Middle Awash valley in Ethiopia.

"The Burtele foot differs from Australopithecus afarensis largely by possessing an opposable great toe," said Haile-Selassie, noting the Burtele toe is more like that of Ardipithecus ramidus, inferring similar characteristics for walking, running and jumping.

"This partial pedal skeleton is unique in providing important evidence bearing on the functional morphology and proportions of several early hominin foot elements," the researchers write in their article titled, "A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations."

Carolyn Ehardt, program director for Biological Anthropology at NSF, points out that research findings such as this foster appreciation for the complex processes that "shaped the evolutionary history of our species."

"We become increasingly aware of the fact that the evolutionary history of hominins is not unlike that of other groups of organisms in the potential for morphological and behavioral diversity and multiple adaptive pathways characterizing those life-forms during particular evolutionary time periods," she said.

The Burtele foot has some skeletal ratios that fall within the human and gorilla distribution, but outside those of chimpanzees. In addition, the metatarsal of the fourth toe is longer than that of the second toe, a condition seen in some monkeys and Miocene apes.

"Unfortunately this ratio is unknown for both Ardipithecus and Australopithecus," said Haile-Selassie. "But, the finding could indicate the primitive condition for the human family."

The researchers say identifying and naming the species to which the Burtele foot belongs will have to await recovery of more fossils, cranial and dental elements, for example. However, they are sure it does not belong to the species of Lucy, Au. afarensis.

Said Haile-Selassie, "It is probably descended from something like Ardipithecus ramidus."

Joining Haile-Selassie in this research are Beverly Z. Saylor and Bruce M. Latimer of Case Western Reserve University, Cleveland, Ohio; Alan Deino of the Berkeley Geochronology Center, Berkeley, California; Naomi E. Levin of Johns Hopkins University in Baltimore and Mulugeta Alene of Addis Ababa University in Ethiopia.

In addition to NSF, the LSB Leakey Foundation, the National Geographic Society and the Cleveland Museum of Natural History supported this research.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485 bmixon@nsf.gov
Glenda Bogar, Cleveland Museum of Natural History (216) 231-2071 gbogar@cmnh.org
Program Contacts
Carolyn Ehardt, NSF (703) 292-7850 cehardt@nsf.gov
Principal Investigators
Yohannes Haile-Selassie, Cleveland Museum of Natural History (216) 231-4600 yhailese@cmnh.org

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>