Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Burtele Foot Indicates Lucy Not Alone

Discovery of partial foot skeleton could mean hominin species lived side by side

A new fossil discovery from Eastern Africa called the Burtele foot indicates Australopithecus afarensis, an early relative of modern humans, may not have been the only hominin to walk the plains and woodlands of what is now the Afar region of Ethiopia some 3.4 million years ago.

Researchers openly have questioned whether Au. afarensis, the species to which the famous fossil "Lucy" belongs, was the only living hominin during the late Pliocene of Africa. Lucy's bones provided evidence that she and perhaps other early hominins may have walked upright, but whether or not she was the sole hominin species in her particular geologic time scale has been the subject of much debate.

"There was indeed more than one early hominin species during that time," said Yohannes Haile-Selassie, head of Physical Anthropology at the Cleveland Museum of Natural History and lead author of the findings.

Haile-Selassie and a team of anthropologists and geologists report finding the partial skeleton of a foot that belonged to an early human ancestor that was neither Au. afarensis nor another hominin called Kenyanthropus platyops, a creature that some paleoanthropologists argue was a second hominin that lived at the same time as Au. afarensis.

The journal Nature published the finding today. The National Science Foundation's (NSF) Division of Behavioral and Cognitive Sciences partially funded the research.

Descriptions of Kenyanthropus platyops led some scientists to dispute whether only one hominin inhabited Africa's upper regions 3.9 to 2.9 million years ago mainly due to the distorted nature of the specimen used as the basis for the original published description of Kenyanthropus platyops, said Haile-Selassie.

"Tim White, (a member of the research team who began uncovering Lucy in 1973), argued that Kenyanthropus platyops is a Kenyan version of Australopithecus afarensis and that the subtle differences between the two could be subsumed into an intra-specific variation."

In other words, he argued there was no evidence a second hominin roamed the landscape during the time of Au. afarensis. But Haile-Selassie and his team may have found proof of at least two hominin species.

In Woranso-Mille, a relatively new palaeontological site located in the central Afar region of Ethiopia, researchers dug up a 3.4 million year old partial foot skeleton that does not match the contemporaneous Au. afarensis in form or shape.

Moreover, the skeletal remains infer locomotor adaptations more similar to an earlier, 4.4 million year old hominin, Ardipithecus ramidus, that was discovered by a research team led by White in 1992-1993 in the Middle Awash valley in Ethiopia.

"The Burtele foot differs from Australopithecus afarensis largely by possessing an opposable great toe," said Haile-Selassie, noting the Burtele toe is more like that of Ardipithecus ramidus, inferring similar characteristics for walking, running and jumping.

"This partial pedal skeleton is unique in providing important evidence bearing on the functional morphology and proportions of several early hominin foot elements," the researchers write in their article titled, "A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations."

Carolyn Ehardt, program director for Biological Anthropology at NSF, points out that research findings such as this foster appreciation for the complex processes that "shaped the evolutionary history of our species."

"We become increasingly aware of the fact that the evolutionary history of hominins is not unlike that of other groups of organisms in the potential for morphological and behavioral diversity and multiple adaptive pathways characterizing those life-forms during particular evolutionary time periods," she said.

The Burtele foot has some skeletal ratios that fall within the human and gorilla distribution, but outside those of chimpanzees. In addition, the metatarsal of the fourth toe is longer than that of the second toe, a condition seen in some monkeys and Miocene apes.

"Unfortunately this ratio is unknown for both Ardipithecus and Australopithecus," said Haile-Selassie. "But, the finding could indicate the primitive condition for the human family."

The researchers say identifying and naming the species to which the Burtele foot belongs will have to await recovery of more fossils, cranial and dental elements, for example. However, they are sure it does not belong to the species of Lucy, Au. afarensis.

Said Haile-Selassie, "It is probably descended from something like Ardipithecus ramidus."

Joining Haile-Selassie in this research are Beverly Z. Saylor and Bruce M. Latimer of Case Western Reserve University, Cleveland, Ohio; Alan Deino of the Berkeley Geochronology Center, Berkeley, California; Naomi E. Levin of Johns Hopkins University in Baltimore and Mulugeta Alene of Addis Ababa University in Ethiopia.

In addition to NSF, the LSB Leakey Foundation, the National Geographic Society and the Cleveland Museum of Natural History supported this research.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485
Glenda Bogar, Cleveland Museum of Natural History (216) 231-2071
Program Contacts
Carolyn Ehardt, NSF (703) 292-7850
Principal Investigators
Yohannes Haile-Selassie, Cleveland Museum of Natural History (216) 231-4600

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>