Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buried fossil soils found to be awash in carbon

26.05.2014

Soils that formed on the Earth's surface thousands of years ago and that are now deeply buried features of vanished landscapes have been found to be rich in carbon, adding a new dimension to our planet's carbon cycle.

The finding, reported today (May 25, 2014) in the journal Nature Geoscience, is significant as it suggests that deep soils can contain long-buried stocks of organic carbon which could, through erosion, agriculture, deforestation, mining and other human activities, contribute to global climate change.


An eroding bluff on the US Great Plains reveals a buried, carbon-rich layer of fossil soil. A team of researchers led by UW-Madison Assistant Professor of geography Erika Marin-Spiotta has found that buried fossil soils contain significant amounts of carbon and could contribute to climate change as the carbon is released through human activities such as mining, agriculutre and deforestation.

Credit: Jospeh Mason

"There is a lot of carbon at depths where nobody is measuring," says Erika Marin-Spiotta, a University of Wisconsin-Madison assistant professor of geography and the lead author of the new study. "It was assumed that there was little carbon in deeper soils. Most studies are done in only the top 30 centimeters. Our study is showing that we are potentially grossly underestimating carbon in soils."

The soil studied by Marin-Spiotta and her colleagues, known as the Brady soil, formed between 15,000 and 13,500 years ago in what is now Nebraska, Kansas and other parts of the Great Plains. It lies up to six-and-a- half meters below the present-day surface and was buried by a vast accumulation of windborne dust known as loess beginning about 10,000 years ago, when the glaciers that covered much of North America began to retreat.

The region where the Brady soil formed was not glaciated, but underwent radical change as the Northern Hemisphere's retreating glaciers sparked an abrupt shift in climate, including changes in vegetation and a regime of wildfire that contributed to carbon sequestration as the soil was rapidly buried by accumulating loess.

"Most of the carbon (in the Brady soil) was fire derived or black carbon," notes Marin-Spiotta, whose team employed an array of new analytical methods, including spectroscopic and isotopic analyses, to parse the soil and its chemistry. "It looks like there was an incredible amount of fire."

The team led by Marin-Spiotta also found organic matter from ancient plants that, thanks to the thick blanket of loess, had not fully decomposed. Rapid burial helped isolate the soil from biological processes that would ordinarily break down carbon in the soil.

Such buried soils, according to UW-Madison geography Professor and study co-author Joseph Mason, are not unique to the Great Plains and occur worldwide.

The work suggests that fossil organic carbon in buried soils is widespread and, as humans increasingly disturb landscapes through a variety of activities, a potential contributor to climate change as carbon that had been locked away for thousands of years in arid and semiarid environments is reintroduced to the environment.

The element carbon comes in many forms and cycles through the environment – land, sea and atmosphere – just as water in various forms cycles through the ground, oceans and the air. Scientists have long known about the carbon storage capacity of soils, the potential for carbon sequestration, and that carbon in soil can be released to the atmosphere through microbial decomposition.

The deeply buried soil studied by Marin-Spiotta, Mason and their colleagues, a one-meter-thick ribbon of dark soil far below the modern surface, is a time capsule of a past environment, the researchers explain. It provides a snapshot of an environment undergoing significant change due to a shifting climate. The retreat of the glaciers signaled a warming world, and likely contributed to a changing environment by setting the stage for an increased regime of wildfire.

"The world was getting warmer during the time the Brady soil formed," says Mason. "Warm-season prairie grasses were increasing and their expansion on the landscape was almost certainly related to rising temperatures."

The retreat of the glaciers also set in motion an era when loess began to cover large swaths of the ancient landscape. Essentially dust, loess deposits can be thick — more than 50 meters deep in parts of the Midwestern United States and areas of China. It blankets large areas, covering hundreds of square kilometers in meters of sediment.

###

The study conducted by Marin-Spiotta, Mason, former UW-Madison Nelson Institute graduate student Nina Chaopricha, and their colleagues was supported by the National Science Foundation and the Wisconsin Alumni Research Foundation.

—Terry Devitt, 608-262-8282, trdevitt@wisc.edu

NOTE: A high-resolution photo to accompany this release can be downloaded at http://www.news.wisc.edu/newsphotos/soils-2014.html

Erika Marin-Spiotta | Eurek Alert!

Further reports about: Plains Rapid UW-Madison activities atmosphere cycles glaciers landscape soils

More articles from Earth Sciences:

nachricht Crucial peatlands carbon-sink vulnerable to rising sea levels
29.06.2016 | University of Exeter

nachricht ChemCam findings hint at oxygen-rich past on Mars
28.06.2016 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>