Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buried fossil soils found to be awash in carbon

26.05.2014

Soils that formed on the Earth's surface thousands of years ago and that are now deeply buried features of vanished landscapes have been found to be rich in carbon, adding a new dimension to our planet's carbon cycle.

The finding, reported today (May 25, 2014) in the journal Nature Geoscience, is significant as it suggests that deep soils can contain long-buried stocks of organic carbon which could, through erosion, agriculture, deforestation, mining and other human activities, contribute to global climate change.


An eroding bluff on the US Great Plains reveals a buried, carbon-rich layer of fossil soil. A team of researchers led by UW-Madison Assistant Professor of geography Erika Marin-Spiotta has found that buried fossil soils contain significant amounts of carbon and could contribute to climate change as the carbon is released through human activities such as mining, agriculutre and deforestation.

Credit: Jospeh Mason

"There is a lot of carbon at depths where nobody is measuring," says Erika Marin-Spiotta, a University of Wisconsin-Madison assistant professor of geography and the lead author of the new study. "It was assumed that there was little carbon in deeper soils. Most studies are done in only the top 30 centimeters. Our study is showing that we are potentially grossly underestimating carbon in soils."

The soil studied by Marin-Spiotta and her colleagues, known as the Brady soil, formed between 15,000 and 13,500 years ago in what is now Nebraska, Kansas and other parts of the Great Plains. It lies up to six-and-a- half meters below the present-day surface and was buried by a vast accumulation of windborne dust known as loess beginning about 10,000 years ago, when the glaciers that covered much of North America began to retreat.

The region where the Brady soil formed was not glaciated, but underwent radical change as the Northern Hemisphere's retreating glaciers sparked an abrupt shift in climate, including changes in vegetation and a regime of wildfire that contributed to carbon sequestration as the soil was rapidly buried by accumulating loess.

"Most of the carbon (in the Brady soil) was fire derived or black carbon," notes Marin-Spiotta, whose team employed an array of new analytical methods, including spectroscopic and isotopic analyses, to parse the soil and its chemistry. "It looks like there was an incredible amount of fire."

The team led by Marin-Spiotta also found organic matter from ancient plants that, thanks to the thick blanket of loess, had not fully decomposed. Rapid burial helped isolate the soil from biological processes that would ordinarily break down carbon in the soil.

Such buried soils, according to UW-Madison geography Professor and study co-author Joseph Mason, are not unique to the Great Plains and occur worldwide.

The work suggests that fossil organic carbon in buried soils is widespread and, as humans increasingly disturb landscapes through a variety of activities, a potential contributor to climate change as carbon that had been locked away for thousands of years in arid and semiarid environments is reintroduced to the environment.

The element carbon comes in many forms and cycles through the environment – land, sea and atmosphere – just as water in various forms cycles through the ground, oceans and the air. Scientists have long known about the carbon storage capacity of soils, the potential for carbon sequestration, and that carbon in soil can be released to the atmosphere through microbial decomposition.

The deeply buried soil studied by Marin-Spiotta, Mason and their colleagues, a one-meter-thick ribbon of dark soil far below the modern surface, is a time capsule of a past environment, the researchers explain. It provides a snapshot of an environment undergoing significant change due to a shifting climate. The retreat of the glaciers signaled a warming world, and likely contributed to a changing environment by setting the stage for an increased regime of wildfire.

"The world was getting warmer during the time the Brady soil formed," says Mason. "Warm-season prairie grasses were increasing and their expansion on the landscape was almost certainly related to rising temperatures."

The retreat of the glaciers also set in motion an era when loess began to cover large swaths of the ancient landscape. Essentially dust, loess deposits can be thick — more than 50 meters deep in parts of the Midwestern United States and areas of China. It blankets large areas, covering hundreds of square kilometers in meters of sediment.

###

The study conducted by Marin-Spiotta, Mason, former UW-Madison Nelson Institute graduate student Nina Chaopricha, and their colleagues was supported by the National Science Foundation and the Wisconsin Alumni Research Foundation.

—Terry Devitt, 608-262-8282, trdevitt@wisc.edu

NOTE: A high-resolution photo to accompany this release can be downloaded at http://www.news.wisc.edu/newsphotos/soils-2014.html

Erika Marin-Spiotta | Eurek Alert!

Further reports about: Plains Rapid UW-Madison activities atmosphere cycles glaciers landscape soils

More articles from Earth Sciences:

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

nachricht Scientists tackle mystery of thunderstorms that strike at night
21.05.2015 | National Center for Atmospheric Research/University Corporation for Atmospheric Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>