Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

British scientists go cloud-hopping in the Pacific to improve climate predictions

22.10.2008
Press release issued by the National Centre for Atmospheric Science (NCAS), the Natural Environment Research Council (NERC), the University of Manchester, University of Leeds and University of Reading

A 20-strong -team of cloud and climate experts from the UK's National Centre for Atmospheric Science will today set off for Chile to investigate how massive swathes of clouds that hang over the Pacific are affecting climate and weather all round the world, including the UK. This new £3M project aims to reduce some of the largest errors currently in our climate models and thus greatly improve predictions of future climate change.

These immense clouds - often exceeding the area of the USA in size - are believed to be central to global climate because they act like a colossal mirror, reflecting sunlight back into space and substantially reducing the amount of energy reaching the Earth's surface. They also help keep the ocean cool beneath them. Both of these effects greatly impact the amount of heat transported to the tropical Pacific affecting its climate and having a knock-on effect for weather around the world.

During this month-long expedition scientists will determine how and why these clouds form so that they can be more accurately represented in global climate models. Joining forces with the UK Met Office, the team will fly in two UK research aircraft, swooping in and out of these vast, low-lying clouds, collecting detailed measurements that describe the clouds' properties.

Using newly developed cloud and dust probes fitted to the aircraft, the scientists will determine exactly how the clouds form, how reflective they are and what determines their lifetime. Importantly, they aim to establish whether man-made pollution, from extensive mining activities along the Chilean and Peruvian coasts plays a significant role in changing cloud properties. Tiny particles emitted during mining vastly increase the number of water droplets that form in the clouds and may affect how much rain they produce. The scientists will also find out whether clouds made from these particles are more reflective than cleaner clouds so having a greater affect on climate.

Lead scientist, Professor Hugh Coe from the National Centre for Atmospheric Science said: "These are some of the largest cloud systems in the world and we know they must play a very significant role in climate change, yet we know that climate models do not represent them very well. This campaign is a fantastic opportunity to make cutting-edge measurements in a unique environment and merge them with state-of-the-art climate models. By working closely with the Met Office and international colleagues in this way, we hope to finally hit some of the uncertainties in current climate models on the head"

This UK project forms part of a much larger international programme of work called VOCALS (VAMOS Ocean Cloud Atmosphere Land Study), which considers in detail the complex feedbacks between clouds, ocean, land (the Andes) and how these affect the global climate. The UK team will be joining forces with over 200 other international scientists from 10 different countries to carry out the field campaign, and a total of 5 research aircraft and two research vessels will be involved.

Dr Louisa Watts | NCAScomms
Further information:
http://www.ncas.ac.uk
http://www.ncas.ac.uk/communications/info_and_images_for_vocals_08.html

Further reports about: Atmospheric climate models cloud-hopping clouds future climate change

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>