Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

British scientists go cloud-hopping in the Pacific to improve climate predictions

22.10.2008
Press release issued by the National Centre for Atmospheric Science (NCAS), the Natural Environment Research Council (NERC), the University of Manchester, University of Leeds and University of Reading

A 20-strong -team of cloud and climate experts from the UK's National Centre for Atmospheric Science will today set off for Chile to investigate how massive swathes of clouds that hang over the Pacific are affecting climate and weather all round the world, including the UK. This new £3M project aims to reduce some of the largest errors currently in our climate models and thus greatly improve predictions of future climate change.

These immense clouds - often exceeding the area of the USA in size - are believed to be central to global climate because they act like a colossal mirror, reflecting sunlight back into space and substantially reducing the amount of energy reaching the Earth's surface. They also help keep the ocean cool beneath them. Both of these effects greatly impact the amount of heat transported to the tropical Pacific affecting its climate and having a knock-on effect for weather around the world.

During this month-long expedition scientists will determine how and why these clouds form so that they can be more accurately represented in global climate models. Joining forces with the UK Met Office, the team will fly in two UK research aircraft, swooping in and out of these vast, low-lying clouds, collecting detailed measurements that describe the clouds' properties.

Using newly developed cloud and dust probes fitted to the aircraft, the scientists will determine exactly how the clouds form, how reflective they are and what determines their lifetime. Importantly, they aim to establish whether man-made pollution, from extensive mining activities along the Chilean and Peruvian coasts plays a significant role in changing cloud properties. Tiny particles emitted during mining vastly increase the number of water droplets that form in the clouds and may affect how much rain they produce. The scientists will also find out whether clouds made from these particles are more reflective than cleaner clouds so having a greater affect on climate.

Lead scientist, Professor Hugh Coe from the National Centre for Atmospheric Science said: "These are some of the largest cloud systems in the world and we know they must play a very significant role in climate change, yet we know that climate models do not represent them very well. This campaign is a fantastic opportunity to make cutting-edge measurements in a unique environment and merge them with state-of-the-art climate models. By working closely with the Met Office and international colleagues in this way, we hope to finally hit some of the uncertainties in current climate models on the head"

This UK project forms part of a much larger international programme of work called VOCALS (VAMOS Ocean Cloud Atmosphere Land Study), which considers in detail the complex feedbacks between clouds, ocean, land (the Andes) and how these affect the global climate. The UK team will be joining forces with over 200 other international scientists from 10 different countries to carry out the field campaign, and a total of 5 research aircraft and two research vessels will be involved.

Dr Louisa Watts | NCAScomms
Further information:
http://www.ncas.ac.uk
http://www.ncas.ac.uk/communications/info_and_images_for_vocals_08.html

Further reports about: Atmospheric climate models cloud-hopping clouds future climate change

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>