Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

British scientists go cloud-hopping in the Pacific to improve climate predictions

22.10.2008
Press release issued by the National Centre for Atmospheric Science (NCAS), the Natural Environment Research Council (NERC), the University of Manchester, University of Leeds and University of Reading

A 20-strong -team of cloud and climate experts from the UK's National Centre for Atmospheric Science will today set off for Chile to investigate how massive swathes of clouds that hang over the Pacific are affecting climate and weather all round the world, including the UK. This new £3M project aims to reduce some of the largest errors currently in our climate models and thus greatly improve predictions of future climate change.

These immense clouds - often exceeding the area of the USA in size - are believed to be central to global climate because they act like a colossal mirror, reflecting sunlight back into space and substantially reducing the amount of energy reaching the Earth's surface. They also help keep the ocean cool beneath them. Both of these effects greatly impact the amount of heat transported to the tropical Pacific affecting its climate and having a knock-on effect for weather around the world.

During this month-long expedition scientists will determine how and why these clouds form so that they can be more accurately represented in global climate models. Joining forces with the UK Met Office, the team will fly in two UK research aircraft, swooping in and out of these vast, low-lying clouds, collecting detailed measurements that describe the clouds' properties.

Using newly developed cloud and dust probes fitted to the aircraft, the scientists will determine exactly how the clouds form, how reflective they are and what determines their lifetime. Importantly, they aim to establish whether man-made pollution, from extensive mining activities along the Chilean and Peruvian coasts plays a significant role in changing cloud properties. Tiny particles emitted during mining vastly increase the number of water droplets that form in the clouds and may affect how much rain they produce. The scientists will also find out whether clouds made from these particles are more reflective than cleaner clouds so having a greater affect on climate.

Lead scientist, Professor Hugh Coe from the National Centre for Atmospheric Science said: "These are some of the largest cloud systems in the world and we know they must play a very significant role in climate change, yet we know that climate models do not represent them very well. This campaign is a fantastic opportunity to make cutting-edge measurements in a unique environment and merge them with state-of-the-art climate models. By working closely with the Met Office and international colleagues in this way, we hope to finally hit some of the uncertainties in current climate models on the head"

This UK project forms part of a much larger international programme of work called VOCALS (VAMOS Ocean Cloud Atmosphere Land Study), which considers in detail the complex feedbacks between clouds, ocean, land (the Andes) and how these affect the global climate. The UK team will be joining forces with over 200 other international scientists from 10 different countries to carry out the field campaign, and a total of 5 research aircraft and two research vessels will be involved.

Dr Louisa Watts | NCAScomms
Further information:
http://www.ncas.ac.uk
http://www.ncas.ac.uk/communications/info_and_images_for_vocals_08.html

Further reports about: Atmospheric climate models cloud-hopping clouds future climate change

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>