Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

British scientists go cloud-hopping in the Pacific to improve climate predictions

22.10.2008
Press release issued by the National Centre for Atmospheric Science (NCAS), the Natural Environment Research Council (NERC), the University of Manchester, University of Leeds and University of Reading

A 20-strong -team of cloud and climate experts from the UK's National Centre for Atmospheric Science will today set off for Chile to investigate how massive swathes of clouds that hang over the Pacific are affecting climate and weather all round the world, including the UK. This new £3M project aims to reduce some of the largest errors currently in our climate models and thus greatly improve predictions of future climate change.

These immense clouds - often exceeding the area of the USA in size - are believed to be central to global climate because they act like a colossal mirror, reflecting sunlight back into space and substantially reducing the amount of energy reaching the Earth's surface. They also help keep the ocean cool beneath them. Both of these effects greatly impact the amount of heat transported to the tropical Pacific affecting its climate and having a knock-on effect for weather around the world.

During this month-long expedition scientists will determine how and why these clouds form so that they can be more accurately represented in global climate models. Joining forces with the UK Met Office, the team will fly in two UK research aircraft, swooping in and out of these vast, low-lying clouds, collecting detailed measurements that describe the clouds' properties.

Using newly developed cloud and dust probes fitted to the aircraft, the scientists will determine exactly how the clouds form, how reflective they are and what determines their lifetime. Importantly, they aim to establish whether man-made pollution, from extensive mining activities along the Chilean and Peruvian coasts plays a significant role in changing cloud properties. Tiny particles emitted during mining vastly increase the number of water droplets that form in the clouds and may affect how much rain they produce. The scientists will also find out whether clouds made from these particles are more reflective than cleaner clouds so having a greater affect on climate.

Lead scientist, Professor Hugh Coe from the National Centre for Atmospheric Science said: "These are some of the largest cloud systems in the world and we know they must play a very significant role in climate change, yet we know that climate models do not represent them very well. This campaign is a fantastic opportunity to make cutting-edge measurements in a unique environment and merge them with state-of-the-art climate models. By working closely with the Met Office and international colleagues in this way, we hope to finally hit some of the uncertainties in current climate models on the head"

This UK project forms part of a much larger international programme of work called VOCALS (VAMOS Ocean Cloud Atmosphere Land Study), which considers in detail the complex feedbacks between clouds, ocean, land (the Andes) and how these affect the global climate. The UK team will be joining forces with over 200 other international scientists from 10 different countries to carry out the field campaign, and a total of 5 research aircraft and two research vessels will be involved.

Dr Louisa Watts | NCAScomms
Further information:
http://www.ncas.ac.uk
http://www.ncas.ac.uk/communications/info_and_images_for_vocals_08.html

Further reports about: Atmospheric climate models cloud-hopping clouds future climate change

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>