Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

British scientific expedition discovers world's deepest known undersea volcanic vents

12.04.2010
Deepest known undersea volcanic vents

A British scientific expedition has discovered the world's deepest undersea volcanic vents, known as 'black smokers', 3.1 miles (5000 metres) deep in the Cayman Trough in the Caribbean. Using a deep-diving vehicle remotely controlled from the Royal Research Ship James Cook, the scientists found slender spires made of copper and iron ores on the seafloor, erupting water hot enough to melt lead, nearly half a mile deeper than anyone has seen before.

Deep-sea vents are undersea springs where superheated water erupts from the ocean floor. They were first seen in the Pacific three decades ago, but most are found between one and two miles deep. Scientists are fascinated by deep-sea vents because the scalding water that gushes from them nourishes lush colonies of deep-sea creatures, which has forced scientists to rewrite the rules of biology. Studying the life-forms that thrive in such unlikely havens is providing insights into patterns of marine life around the world, the possibility of life on other planets, and even how life on Earth began.

The expedition to the Cayman Trough is being run by Drs Doug Connelly, Jon Copley, Bramley Murton, Kate Stansfield and Professor Paul Tyler, all from Southampton, UK. They used a robot submarine called Autosub6000, developed by engineers at the National Oceanography Centre (NOC) in Southampton, to survey the seafloor of the Cayman Trough in unprecedented detail. The team then launched another deep-sea vehicle called HyBIS, developed by team member Murton and Berkshire-based engineering company Hydro-Lek Ltd, to film the world's deepest vents for the first time.

"Seeing the world's deepest black-smoker vents looming out of the darkness was awe-inspiring," says Copley, a marine biologist at the University of Southampton's School of Ocean and Earth Science (SOES) based at the NOC and leader of the overall research programme. "Superheated water was gushing out of their two-storey high mineral spires, more than three miles deep beneath the waves". He added: "We are proud to show what British underwater technology can achieve in exploring this frontier - the UK subsea technology sector is worth £4 billion per year and employs 40 000 people, which puts it on a par with our space industry."

The Cayman Trough is the world's deepest undersea volcanic rift, running across the seafloor of the Caribbean. The pressure three miles deep at the bottom of the Trough - 500 times normal atmospheric pressure - is equivalent to the weight of a large family car pushing down on every square inch of the creatures that live there, and on the undersea vehicles that the scientists used to reveal this extreme environment. The researchers will now compare the marine life in the abyss of the Cayman Trough with that known from other deep-sea vents, to understand the web of life throughout the deep ocean. The team will also study the chemistry of the hot water gushing from the vents, and the geology of the undersea volcanoes where these vents are found, to understand the fundamental geological and geochemical processes that shape our world.

"We hope our discovery will yield new insights into biogeochemically important elements in one of the most extreme naturally occurring environments on our planet," says geochemist Doug Connelly of the NOC, who is the Principal Scientist of the expedition.

"It was like wandering across the surface of another world," says geologist Bramley Murton of the NOC, who piloted the HyBIS underwater vehicle around the world's deepest volcanic vents for the first time. "The rainbow hues of the mineral spires and the fluorescent blues of the microbial mats covering them were like nothing I had ever seen before."

"Our multidisciplinary approach - which brings together physics, chemistry, geology and biology with state-of-the-art underwater technology - has allowed us to find deep-sea vents more quickly than ever before," adds oceanographer Kate Stansfield of the NOC.

The team aboard the ship includes students from the UK, Ireland, Germany and Trinidad. "This expedition has been a superb opportunity to train the next generation of marine scientists at the cutting edge of deep-sea research," says marine biologist Paul Tyler of SOES, who heads the international Census of Marine Life Chemosynthetic Ecosystems (ChEss) programme.

The expedition will continue to explore the depths of the Cayman Trough until 20th April. The team are posting daily updates on their expedition website at http://www.thesearethevoyages.net/, including photos and videos from their research ship. "We look forward to sharing the excitement of exploring the deep ocean with people around the world," says Copley.

In addition to the scientists from Southampton, the team aboard the ship includes researchers from the University of Durham in the UK, the University of North Carolina Wilmington and the University of Texas in the US, and the University of Bergen in Norway. The expedition members are also working with colleagues ashore at Woods Hole Oceanographic Institution and Duke University in the US to analyse the deep-sea vents.

The expedition is part of a research project funded by the UK Natural Environment Research Council to study the world's deepest undersea volcanoes. The research team will return to the Cayman Trough for a second expedition using the UK's deep-diving remotely-operated vehicle Isis, once a research ship is scheduled for the next phase of their project.

ADDITIONAL MEDIA RESOURCES

For photos and video footage of the world's deepest volcanic vents, and the undersea vehicles used by the expedition, please contact:

Dr Rory Howlett, Media and Communications Officer
National Oceanography Centre, Southampton
Tel: +44 (0)23 8059 6170
Email: r.howlett@noc.soton.ac.uk
Kathryn Cecil, Media Relations Officer
University of Southampton
Tel: +44 (0)23 8059 2128
Email: K.E.Cecil@soton.ac.uk
To arrange media interviews with expedition team members on the RRS James Cook, please email our Outreach Officer aboard the ship, Sally Wilcox (sally.a.wilcox@btinternet.com). Telephone interviews are possible from the ship by prior arrangement. There are also facilities aboard for recording video interview footage. Alternatively, scientists can be contacted via email aboard the ship as follows: Dr Doug Connelly (dpc@noc.soton.ac.uk); Dr Jon Copley (jtc@noc.soton.ac.uk); Dr Bramley Murton (bjm@noc.soton.ac.uk); Dr Kate Stansfield (ks1@noc.soton.ac.uk); Prof Paul Tyler (pat8@noc.soton.ac.uk).

ADDITIONAL INFORMATION

(1) The expedition aboard the RRS James Cook began in Port of Spain, Trinidad on 21st March and ends in Montego Bay, Jamaica on 21st April. It is part of a £462k research project funded by the UK Natural Environment Research Council (http://www.nerc.ac.uk).

(2) Team members Dr Bramley Murton and Dr Jon Copley are Chair and Co-Chair of InterRidge, the international organisation promoting co-operation between nations in scientific research at mid-ocean ridges. The InterRidge Office is currently hosted at the National Oceanography Centre, Southampton; for more information, please visit http://www.interridge.org/

(3) Team member Professor Paul Tyler is Chair of the international Census of Marine Life ChEss (Chemosynthetic Ecosystems) project (http://www.noc.soton.ac.uk/chess), which is based at the National Oceanography Centre, Southampton.

(4) The National Oceanography Centre (NOC) is a new, national research organisation that went live from 1 April this year. The NOC will work in partnership with the UK marine research community to deliver integrated marine science and technology from the coast to the deep ocean

The NOC brings together into a single institution NERC-managed activity at the National Oceanography Centre, Southampton (NOCS) and the Proudman Oceanographic Laboratory (POL) in Liverpool. The NOC will work in close partnership with the wider marine science community to create the integrated research capability needed to tackle the big environmental issues facing the world. Research priorities will include the oceans' role in climate change, sea level change and the future of the Arctic Ocean.

The University of Southampton and the University of Liverpool are hosting partners of the National Oceanography Centre. The University of Southampton's School of Ocean & Earth Science shares a waterfront campus with the NERC-operated elements of the NOC, and a close collaborative relationship is maintained at both Southampton and Liverpool. http://noc.ac.uk/

(5) The University of Southampton's School of Ocean and Earth Science (SOES) is based at the National Oceanography Centre in Southampton.

Apart from its world leading research, SOES is also responsible for the education of 700 undergraduate and postgraduate students www.soton.ac.uk/soes

The University of Southampton is a leading UK teaching and research institution with a global reputation for research and scholarship across a wide range of subjects in engineering, science, social sciences, health, arts and humanities www.soton.ac.uk

With over 22,000 students, around 5,000 staff, and an annual turnover of almost £400 million, the University of Southampton is one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.

The University is also home to a number of world-leading research centres including the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Centre for the Developmental Origins of Health and Disease, and the Southampton Statistical Sciences Research Institute.

(6) The RRS James Cook is the UK's newest ocean-going research ship, operated by the Natural Environment Research Council. The current expedition is the 44th voyage of the ship, which was named in February 2007 by HRH Princess Anne.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>