Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black carbon is much larger cause of climate change than previously assessed

15.01.2013
Black carbon is the second largest man-made contributor to global warming and its influence on climate has been greatly underestimated, according to the first quantitative and comprehensive analysis of this pollutant’s climate impact..

The direct influence of black carbon, or soot, on warming the climate could be about twice previous estimates, according to an in-depth study published today in the Journal of Geophysical Research-Atmospheres, a publication of the American Geophysical Union.

Accounting for all of the ways black carbon can affect climate, it is believed to have a warming effect of about 1.1 Watts per square meter (W/m2), approximately two-thirds of the effect of the largest man made contributor to global warming – carbon dioxide.

“This study confirms and goes beyond other research that suggested black carbon has a strong warming effect on climate, just ahead of methane,” said co-lead author David Fahey of the U.S. National Oceanic and Atmospheric Administration (NOAA). The study, a four-year, 232-page effort, led by the International Global Atmospheric Chemistry (IGAC) Project, is likely to guide research efforts, climate modeling, and policy for years to come, the authors and other scientists familiar with the paper said..

The report’s best estimate of direct climate influence by black carbon is about a factor of two higher than most previous work. This includes the estimates in the 2007 Intergovernmental Panel on Climate Change (IPCC) Assessment, which were based on the best available evidence and analysis at that time.

Scientists have spent the years since the last IPCC assessment improving estimates, but the new assessment notes that emissions in some regions are probably higher than estimated. This is consistent with other research that also hinted at significant under-estimates in some regions’ black carbon emissions.

The results indicate that there may be a greater potential to curb warming by reducing black carbon emissions than previously thought.

“There are exciting opportunities to cool climate by reducing soot emissions but it is not straightforward,” said co-author Professor Piers Forster from the University of Leeds’s School of Earth and Environment in the United Kingdom. “Reducing emissions from diesel engines and domestic wood and coal fires is a no-brainer, as there are tandem health and climate benefits. If we did everything we could to reduce these emissions we could buy ourselves up to half a degree (Celsius) less warming--or a couple of decades of respite.”.
However, the international team urges caution because the role of black carbon in climate change is complex. “Black carbon influences climate in many ways, both directly and indirectly, and all of these effects must be considered jointly,” says co-lead author Sarah Doherty of the University of Washington in Seattle, an expert in snow measurements.

The dark particles absorb incoming and scattered heat from the sun (called solar radiation), they can promote the formation of clouds that can have either cooling or warming impact, and they can fall on the surface of snow and ice, promoting warming and increasing melting. In addition, many sources of black carbon also emit other particles that provide a cooling effect, counteracting black carbon.
The research team quantified the complexities of black carbon and the impacts of co-emitted pollutants for different sources, taking into account uncertainties in measurements and calculations. The study suggests mitigation of black carbon emissions for climate benefits must consider all emissions from each source and their complex influences on climate.

Based on the scientists’ analyses of these different sources, black carbon emission reductions targeting diesel engines and some types of wood and coal burning in small household burners would have an immediate cooling impact.

Black carbon is a significant cause of the rapid warming in the Northern Hemisphere at mid to high latitudes, including the northern United States, Canada, northern Europe and northern Asia, according to the report. The particles’ impacts can also be felt farther south, inducing changes in rainfall patterns from the Asian Monsoon. Curbing black carbon emissions could therefore have significant impact on reducing regional climate change while having a positive impact on human health by reducing the amount of damage the particles cause to the respiratory and cardiovascular systems.

“Policy makers, like the Climate and Clean Air Coalition, are talking about ways to slow global warming by reducing black carbon emissions,” said co-lead author Tami Bond of the University of Illinois at Urbana-Champaign. “This study shows that this is a viable option for some black carbon sources and since black carbon is short-lived, the impacts would be noticed immediately. Mitigating black carbon is good for curbing short-term climate change, but to really solve the long-term climate problem, carbon dioxide emissions must also be reduced.”

A note from the editors of the Journal of Geophysical Research – Atmospheres, about the significance of this article and the review process the article underwent, is available at http://bit.ly/11vqZFX

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press.

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:

“Bounding the role of black carbon in the climate system: A scientific assessment”

Authors (* indicates co-lead authors):
*Tami Bond University of Illinois at Urbana-Champaign, USA;*Sarah Doherty Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, USA;*David Fahey NOAA Earth System Research Laboratory and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA.*Piers Forster University of Leeds, United Kingdom;

Contact information for the authors:

Tami Bond, Telephone: +1 (217) 244-5277, Email: yark@illinois.edu

Sarah Doherty, Telephone: +1 (206) 543-6674, Email: sarahd@atmos.washington.edu

David Fahey, Telephone: +1 (303) 497-5277, Email: David.W.Fahey@noaa.gov

Piers Forster, Email: p.m.forster@leeds.ac.uk (or contact Chris Bunting, Press Officer, +44 113 343 2049 or c.j.bunting@leeds.ac.uk)

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>