Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Black carbon is much larger cause of climate change than previously assessed

Black carbon is the second largest man-made contributor to global warming and its influence on climate has been greatly underestimated, according to the first quantitative and comprehensive analysis of this pollutant’s climate impact..

The direct influence of black carbon, or soot, on warming the climate could be about twice previous estimates, according to an in-depth study published today in the Journal of Geophysical Research-Atmospheres, a publication of the American Geophysical Union.

Accounting for all of the ways black carbon can affect climate, it is believed to have a warming effect of about 1.1 Watts per square meter (W/m2), approximately two-thirds of the effect of the largest man made contributor to global warming – carbon dioxide.

“This study confirms and goes beyond other research that suggested black carbon has a strong warming effect on climate, just ahead of methane,” said co-lead author David Fahey of the U.S. National Oceanic and Atmospheric Administration (NOAA). The study, a four-year, 232-page effort, led by the International Global Atmospheric Chemistry (IGAC) Project, is likely to guide research efforts, climate modeling, and policy for years to come, the authors and other scientists familiar with the paper said..

The report’s best estimate of direct climate influence by black carbon is about a factor of two higher than most previous work. This includes the estimates in the 2007 Intergovernmental Panel on Climate Change (IPCC) Assessment, which were based on the best available evidence and analysis at that time.

Scientists have spent the years since the last IPCC assessment improving estimates, but the new assessment notes that emissions in some regions are probably higher than estimated. This is consistent with other research that also hinted at significant under-estimates in some regions’ black carbon emissions.

The results indicate that there may be a greater potential to curb warming by reducing black carbon emissions than previously thought.

“There are exciting opportunities to cool climate by reducing soot emissions but it is not straightforward,” said co-author Professor Piers Forster from the University of Leeds’s School of Earth and Environment in the United Kingdom. “Reducing emissions from diesel engines and domestic wood and coal fires is a no-brainer, as there are tandem health and climate benefits. If we did everything we could to reduce these emissions we could buy ourselves up to half a degree (Celsius) less warming--or a couple of decades of respite.”.
However, the international team urges caution because the role of black carbon in climate change is complex. “Black carbon influences climate in many ways, both directly and indirectly, and all of these effects must be considered jointly,” says co-lead author Sarah Doherty of the University of Washington in Seattle, an expert in snow measurements.

The dark particles absorb incoming and scattered heat from the sun (called solar radiation), they can promote the formation of clouds that can have either cooling or warming impact, and they can fall on the surface of snow and ice, promoting warming and increasing melting. In addition, many sources of black carbon also emit other particles that provide a cooling effect, counteracting black carbon.
The research team quantified the complexities of black carbon and the impacts of co-emitted pollutants for different sources, taking into account uncertainties in measurements and calculations. The study suggests mitigation of black carbon emissions for climate benefits must consider all emissions from each source and their complex influences on climate.

Based on the scientists’ analyses of these different sources, black carbon emission reductions targeting diesel engines and some types of wood and coal burning in small household burners would have an immediate cooling impact.

Black carbon is a significant cause of the rapid warming in the Northern Hemisphere at mid to high latitudes, including the northern United States, Canada, northern Europe and northern Asia, according to the report. The particles’ impacts can also be felt farther south, inducing changes in rainfall patterns from the Asian Monsoon. Curbing black carbon emissions could therefore have significant impact on reducing regional climate change while having a positive impact on human health by reducing the amount of damage the particles cause to the respiratory and cardiovascular systems.

“Policy makers, like the Climate and Clean Air Coalition, are talking about ways to slow global warming by reducing black carbon emissions,” said co-lead author Tami Bond of the University of Illinois at Urbana-Champaign. “This study shows that this is a viable option for some black carbon sources and since black carbon is short-lived, the impacts would be noticed immediately. Mitigating black carbon is good for curbing short-term climate change, but to really solve the long-term climate problem, carbon dioxide emissions must also be reduced.”

A note from the editors of the Journal of Geophysical Research – Atmospheres, about the significance of this article and the review process the article underwent, is available at

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press.

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.


“Bounding the role of black carbon in the climate system: A scientific assessment”

Authors (* indicates co-lead authors):
*Tami Bond University of Illinois at Urbana-Champaign, USA;*Sarah Doherty Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, USA;*David Fahey NOAA Earth System Research Laboratory and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA.*Piers Forster University of Leeds, United Kingdom;

Contact information for the authors:

Tami Bond, Telephone: +1 (217) 244-5277, Email:

Sarah Doherty, Telephone: +1 (206) 543-6674, Email:

David Fahey, Telephone: +1 (303) 497-5277, Email:

Piers Forster, Email: (or contact Chris Bunting, Press Officer, +44 113 343 2049 or

Kate Ramsayer | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>