Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black carbon - element of uncertainty in climate prediction

19.04.2013
The burning of fossil and renewable fuels affects our climate through the production of soot, which can act either warming or cooling. It is difficult for many reasons to take stock of black carbon particles, as shown in a recent article in the journal Science.

In recent months climate scientists have been surprised by a scientific publication. An American research team came to the conclusion that soot’s contribution to global warming is about twice as high as previously thought.


Picture: The smoke from a fire in extremely dry vegetation in the Great Victoria Desert, Australia on 17 January 2013 is nearly black. A bright cumulus cloud rises from the top of the plume. Picture: NASA/C. HADFIELD

Soot particles are formed from the burning of fossil fuels such as coal and oil and also from the use of biomass fuels such as wood. The chemist Tami Bond and her research team estimate that black carbon, the scientific term for soot particles, is more harmful to climate than the greenhouse gas methane.

How such large differences in the assessment of the effect of soot on climate were arrived at is described in a recent publication in the scientific journal Science. Meinrat O. Andreae, Director at the Max Planck Institute for Chemistry in Mainz, and his Californian colleague Veerabhadran Ramanathan explain the global and regional climate effects of the black particles. Soot is the biggest absorber of solar radiation in the earth’s atmosphere.

“Unlike greenhouse gases, black carbon is not a single chemically defined substance with constant physical properties. This alone makes it difficult to precisely determine the impact of black carbon on climate,” says the climate researcher from Mainz, Prof. Andreae. “One reason why there are such large discrepancies in the estimates is the existence of so-called brown carbon.” These brown carbon particles are produced from the burning of biomass and from chemical reactions in the atmosphere. Brown carbon absorbs light and heat exactly like black carbon - something that has been previously ignored in climate models. Instead, it was assumed that brown carbon cooled the climate because the particles reflected more sunlight back into the space than they absorbed in the atmosphere.

To budget the effects of soot on climate all mechanisms must be known

A further element of uncertainty lies in the interplay of the cooling and warming properties of soot. Soot particles not only absorb heat and release it to the earth’s atmosphere extremely well. They also serve as nuclei for the condensation of moisture, which leads to cloud formation. And, clouds in turn reflect the rays of the sun. To determine a correct climate budget for soot, it is necessary to know all the climate relevant mechanisms - cooling and warming.

The research team around the American scientist, Bond, has proposed just such a budget. They have synthesized all available model results and observations and calculated the amount of solar energy that the black particles absorb and therefore can release to the climate system. This so-called radiative forcing of 1.1 watt per cubic meter is twice as high as the value in a study from the United Nations Environment Program (UNEP) and the World Meteorological Organization (WMO), which has been used for predictions of climate warming. For Bond and her colleagues soot is more climate relevant than previously assumed.

How can this big difference to earlier calculations be explained? Andreae and his colleague Ramanathan compare different approaches to derive the radiative forcing resulting from the absorption of light by soot. The climate scientist Ramanathan determined this from absorption data from satellites and from 140 ground stations. The Bond study presents a substantially smaller value derived from emission inventories and atmospheric models, which they then scale up to get to the values from experimental data. From this, Andreae and Ramanathan conclude that in most climate predictions either an important source for soot is not taken into consideration, or that data from estimations of global emissions is not reliable enough.

Soot makes regional climate predictions more uncertain

The uncertainties due to the soot factor are even greater at the regional scale - for example in predictions of precipitation. This comes from the fact that soot particles can have opposing effects on cloud formation. In small clouds the precipitation efficiency is reduced, for large clouds it is increased. In the air over the Indian Ocean soot works like a sun umbrella, thus the sea water is warmed less and less water evaporates. As a result researchers fear that, for example, the monsoon rains in south Asia will weaken - a region in which biomass is increasingly burned.

In addition the absorption of solar radiation by soot causes heat gradients in the atmosphere which cause changes in air circulation. This appears to be responsible for the already observed northward shift of the tropical belt.

If the radiative absorption by soot in previous models is really so markedly underestimated as Bond’s American research team claim, then regional climate effects need to be reevaluated, according to Andreae and Ramanathan. This in turn would require accurate observations of the climate system, from satellite data to microchemical measurements of aerosols.

Yet, the question remains, whether all the effort to reduce the emission of soot is even worth the effort. The burning of fossil fuels releases compounds such as sulfur dioxide that cool our climate. A complete budget for our climate is therefore made even more difficult.

Why we should nevertheless make every attempt to reduce soot emissions as much as possible lies in how harmful it is for human health. Every year an estimated 3.5 million people die from air polluted with soot and related small aerosol particles in households, especially in developing and emerging countries where meals are often still cooked over open fires.

Original Publication:
“Climate’s Dark forcings”: Meinrat O. Andreae and Veerabhadran Ramanathan, Science, 19 April 2013: Vol. 340 no. 6130 pp. 280-281 DOI: 10.1126/science.1235731

Contact:
Prof. Dr. Meinrat O. Andreae
Max Planck Institute for Chemistry, Mainz, Germany
Phone: + 49 (0)6131/ 305-6000
E-Mail: m.andreae@mpic.de

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/en/top-navigation/home.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>