Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bizarre parasite from the Jurassic

25.06.2014

Around 165 million years ago, a spectacular parasite was at home in the freshwater lakes of present-day Inner Mongolia (China): A fly larva with a thorax formed entirely like a sucking plate.

With it, the animal could adhere to salamanders and suck their blood with its mouthparts formed like a sting. To date no insect is known that is equipped with a similar specialised design. The international scientific team is now presenting its findings in the journal "eLIFE".


Salamanders served as hosts: This reconstruction shows how scientists think the fly larvae adhered to the skin of the amphibian. Graphic: Yang Dinghua, Nanjing


The fossil: thanks to the fine-grained mudstone, the details of the two centimetre long parasite Qiyia jurassica are exceptionally preserved. Photo: Bo Wang, Nanjing

The parasite, an elongate fly larva around two centimeters long, had undergone extreme changes over the course of evolution: The head is tiny in comparison to the body, tube-shaped with piercer-like mouthparts at the front. The mid-body (thorax) has been completely transformed underneath into a gigantic sucking plate; the hind-body (abdomen) has caterpillar-like legs.

The international research team believes that this unusual animal is a parasite which lived in a landscape with volcanoes and lakes what is now northeastern China around 165 million years ago. In this fresh water habitat, the parasite crawled onto passing salamanders, attached itself with its sucking plate, and penetrated the thin skin of the amphibians in order to suck blood from them.

"The parasite lived the life of Reilly“, says Prof. Jes Rust from the Steinmann Institute for Geology, Mineralogy and Palaeontology of the University of Bonn. This is because there were many salamanders in the lakes, as fossil finds at the same location near Ningcheng in Inner Mongolia (China) have shown.

“There scientists had also found around 300,000 diverse and exceptionally preserved fossil insects", reports the Chinese scientist Dr. Bo Wang, who is researching in palaeontology at the University of Bonn as a PostDoc with sponsorship provided by the Alexander von Humboldt Foundation. The spectacular fly larva, which has received the scientific name of “Qiyia jurassica”, however, was a quite unexpected find. "Qiyia" in Chinese means "bizarre"; "jurassica" refers to the Jurassic period to which the fossils belong.

A fine-grained mudstone ensured the good state of preservation of the fossil

For the international team of scientists from the University of Bonn, the Linyi University (China), the Nanjing Institute of Geology and Palaeontology (China), the University of Kansas (USA) and the Natural History Museum in London (England), the insect larva is a spectacular find:

"No insect exists today with a comparable body shape", says Dr Bo Wang. That the bizarre larva from the Jurassic has remained so well-preserved to the present day is partly due to the fine-grained mudstone in which the animals were embedded. "The finer the sediment, the better the details are reproduced in the fossils", explains Dr Torsten Wappler of the Steinmann-Institut of the University of Bonn. The conditions in the groundwater also prevented decomposition by bacteria.

Astonishingly, no fossil fish are found in the freshwater lakes of this Jurassic epoch in China. "On the other hand, there are almost unlimited finds of fossilised salamanders, which were found by the thousand“, says Dr Bo Wang. This unusual ecology could explain why the bizarre parasites survived in the lakes: fish are predators of fly larvae and usually hold them in check. "The extreme adaptations in the design of Qiyia jurassica show the extent to which organisms can specialise in the course of evolution", says Prof. Rust.

As unpleasant as the parasites were for the salamanders, their deaths were not caused by the fly larvae. "A parasite only sometimes kills its host when it has achieved its goal, for example, reproduction or feeding ", Dr Wappler explains. If Qiyia jurassica had passed through the larval stage, it would have grown into an adult insect after completing metamorphosis. The scientists don't yet have enough information to speculate as to what the adult it would have looked like, and how it might have lived.

Publication: Extreme adaptations for aquatic ectoparasitism in a Jurassic fly larva, “eLIFE” journal, DOI: 10.7554/elife.02844

Media contact:

Dr. Bo Wang
Steinmann-Institut of the University of Bonn
and State Key Laboratory of Palaeobiology and Stratigraphy
Nanjing Institute of Geology and Palaeontology
Chinese Academy of Sciences (Nanjing/China)
Tel. (0086)13951982860
E-mail: savantwang@gmail.com

Prof. Jes Rust
Steinmann-Institut of the University of Bonn
Tel. ++49-(0)228-734842
E-mail: jrust@uni-bonn.de

PD Dr. Torsten Wappler
Steinmann-Institut of the University of Bonn
Tel. ++49-(0)228-734682
E-mail: twappler@uni-bonn.de

Weitere Informationen:

http://elifesciences.org/lookup/doi/10.7554/elife.02844 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft

Further reports about: Geology Jurassic Palaeontology bizarre fly insect larva larvae parasite parasites salamanders

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>