Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birth of Earth's continents

17.09.2013
New research provides clues on how continents formed early in Earth history

New research led by a University of Calgary geophysicist provides strong evidence against continent formation above a hot mantle plume, similar to an environment that presently exists beneath the Hawaiian Islands.



The analysis, published this month in Nature Geoscience, indicates that the nuclei of Earth's continents formed as a byproduct of mountain-building processes, by stacking up slabs of relatively cold oceanic crust. This process created thick, strong 'keels' in the Earth's mantle that supported the overlying crust and enabled continents to form.

The scientific clues leading to this conclusion derived from computer simulations of the slow cooling process of continents, combined with analysis of the distribution of diamonds in the deep Earth.

The Department of Geoscience's Professor David Eaton developed computer software to enable numerical simulation of the slow diffusive cooling of Earth's mantle over a time span of billions of years.

Working in collaboration with former graduate student, Assistant Professor Claire Perry from the Universite du Quebec a Montreal, Eaton relied on the geological record of diamonds found in Africa to validate his innovative computer simulations.

"For the first time, we are able to quantify the thermal evolution of a realistic 3D Earth model spanning billions of years from the time continents were formed," states Perry.

Mantle plumes consist of an upwelling of hot material within Earth's mantle. Plumes are thought to be the cause of some volcanic centres, especially those that form a linear volcanic chain like Hawaii. Diamonds, which are generally limited to the deepest and oldest parts of the continental mantle, provide a wealth of information on how the host mantle region may have formed.

"Ancient mantle keels are relatively strong, cold and sometimes diamond-bearing material. They are known to extend to depths of 200 kilometres or more beneath the ancient core regions of continents," explains Professor David Eaton. "These mantle keels resisted tectonic recycling into the deep mantle, allowing the preservation of continents over geological time and providing suitable environments for the development of the terrestrial biosphere."

His method takes into account important factors such as dwindling contribution of natural radioactivity to the heat budget, and allows for the calculation of other properties that strongly influence mantle evolution, such as bulk density and rheology (mechanical strength).

"Our computer model emerged from a multi-disciplinary approach combining classical physics, mathematics and computer science," explains Eaton. "By combining those disciplines, we were able to tackle a fundamental geoscientific problem, which may open new doors for future research."

This work provides significant new scientific insights into the formation and evolution of continents on Earth.

The research paper is available online at: http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1950.html

Marie-Helene Thibeault | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.eurekalert.org/multimedia/pub/61895.php?from=249093

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>