Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BIOMASS, a Satellite to Monitor World’s Forests, Set for 2020 Launch

20.06.2013
The European Space Agency is set to develop a new Earth-observing satellite that will map and monitor global forests, providing an unprecedented level of detail and understanding to the role forests play in the global carbon cycle and potential climate change.

Hank Shugart, W.W. Corcoran Professor of Environmental Sciences in the University of Virginia’s College of Arts & Sciences, served on the scientific advisory committee that ultimately convinced the space agency to fund and develop the nearly $525 million satellite.

Called BIOMASS, the satellite is planned for a 2020 launch. In the meantime, a great deal of instrumentation will be developed and calibrated prior to the launch. Shugart, an expert in forestry science and in the use of space satellites for studying the environment, will continue to advise the European Space Agency as it constructs and tests instruments, a role he has previous filled for NASA and other agencies.

“BIOMASS will be a hugely important instrument for global environmental science research in the coming years, and its observations will be the basis of significant international environmental policy in the areas of carbon cycling and global warming,” Shugart said.

The satellite will allow scientists to, in effect, weigh the volume of carbon stored in the forests of the world and bring greater understanding to their role in the cycling of carbon – a major greenhouse gas – in and out of the atmosphere. The satellite also will allow long-term monitoring of forest usage, such as deforestation or reforestation. The information would prove useful to international efforts to reduce carbon emissions from deforestation in rapidly developing countries.

BIOMASS will carry a long wave radar system – P-band – that can penetrate cloud cover and forest canopy to measure the mass of trees in vast remote areas that otherwise would be impossible to accurately assess from the ground.

“It will provide a vertical profile of every layer of the forest; the height and volume,” Shugart said. “It’s an overhead inventory of vast areas, some of which are nearly impenetrable to ground-based researchers.”

The system will provide 3-D mapping of boreal, temperate and tropical forests from the Arctic Circle to the equator and below, and, by implication, the likely habitat range for endangered animals and vegetation. Areas of concentration would include the massive boreal forests of Russia, the temperate regions of China and the vast rain forests of the Amazon basin and other tropical regions.

Because the radar waves would interfere with ground-based radar used by the military in the United States and Europe, those areas would not be scanned by BIOMASS, but environmental scientists already closely study forests in those areas.

“BIOMASS will give us a clear ongoing picture of the condition of the world’s forests and how they might be changing naturally or due to human activity,” Shugart said. “And our involvement with the project should provide new research opportunities for our scientists and students.”

BIOMASS will be the seventh addition to the European Space Agency’s fleet of Earth Explorer satellites, three of which are in orbit, with the rest under development.

McGregor McCance | Newswise
Further information:
http://www.virginia.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>