Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochar alters water flow to improve sand and clay

25.09.2014

Research shines light on soil additive's seemingly contradictory benefits

As more gardeners and farmers add ground charcoal, or biochar, to soil to both boost crop yields and counter global climate change, a new study by researchers at Rice University and Colorado College could help settle the debate about one of biochar's biggest benefits -- the seemingly contradictory ability to make clay soils drain faster and sandy soils drain slower.


Rebecca Barnes (front) and Morgan Gallagher conduct hydrology experiments at Rice University in 2013.

The study, available online this week in the journal PLOS ONE, offers the first detailed explanation for the hydrological mystery.

"Understanding the controls on water movement through biochar-amended soils is critical to explaining other frequently reported benefits of biochar, such as nutrient retention, carbon sequestration and reduced greenhouse gas emissions," said lead author Rebecca Barnes, an assistant professor of environmental science at Colorado College, who began the research while serving as a postdoctoral research associate at Rice.

Biochar can be produced from waste wood, manure or leaves, and its popularity among do-it-yourselfers and gardening buffs took off after archaeological studies found that biochar added to soils in the Amazon more than 1,000 years ago was still improving the water- and nutrient-holding abilities of those poor soils today.

Studies over the past decade have found that biochar soil amendments can either increase or decrease the amount of water that soil holds, but it has been tough for experts to explain why this occurs, due partly to conflicting results from many different field tests.

In the new study, biogeochemists at Rice conducted side-by-side tests of the water-holding ability of three soil types -- sand, clay and topsoil -- both with and without added biochar. The biochar used in the experiments, which was derived from Texas mesquite wood, was prepared to exacting standards in the lab of Rice geochemist Caroline Masiello, a study co-author, to ensure comparable results across soil types.

"Not all biochar is created equal, and one of the important lessons of recent studies is that the hydrological properties of biochar can vary widely, depending on the temperature and time in the reactor," Masiello said. "It's important to use the right recipe for the biochar that you want to make, and the differences can be subtle. For scientific studies, it is critical to make sure you're comparing apples to apples."

Barnes said the team chose to make its comparison with simple, relatively homogenous soil materials to compare results to established hydrologic models that relate water flow to a soil's physical properties, like bulk density and porosity.

"This is what helped us explain the seeming disconnect that people have noted when amending soils with biochar," she said. "Biochar is light and highly porous. When biochar is added to clay, it makes the soil less dense and it increases hydraulic conductivity, which makes intuitive sense. Adding biochar to sand also makes it less dense, so one would expect that soil to drain more quickly as well; but in fact, researchers have found that biochar-amended sand holds water longer."

Study co-author Brandon Dugan, assistant professor of Earth science at Rice, said, "We hypothesize that this is likely due to the presence of two flow paths for water through soil-biochar mixtures. One pathway is between the soil and biochar grains, and a second pathway is water moving through the biochar itself."

Barnes said the highly porous structure of biochar makes each of these pathways more torturous than the pathway that water would take through sand alone. Moreover, the surface chemistry of biochar -- both on external surfaces and inside pores -- is likely to promote absorption and further slow the movement of water.

"By adding our results to the growing body of literature, we show that when biochar is added to sand or other coarse-grained soils, there is a simultaneous decrease in bulk density and hydraulic conductivity, as opposed to the expected result of decreased bulk density correlated with increased hydraulic conductivity that has been observed for other soil types," Barnes said.

The study is the latest from Rice's interdisciplinary Biochar Research Group, which formed in the wake of Hurricane Ike in 2008 when the city of Houston called for ideas about how to get rid of an estimated 5.6 million cubic yards of fallen trees, broken branches and dead greenery left behind by the storm. The Rice Biochar Group won the $10,000 grand prize in the city's "Recycle Ike" contest and used the money to jump-start a wide-ranging research program that has since received support from the National Science Foundation, the Department of Energy, Rice's Faculty Initiative Fund, Rice's Shell Center for Sustainability and Rice's Institute of Bioscience and Bioengineering.

###

Study co-authors include co-first author Morgan Gallagher, a former Rice graduate student who is now a postdoctoral researcher at Rice and an associate in research at Duke University's Center for Global Change, and Rice graduate student Zuolin Liu.

High-resolution IMAGES are available for download at:

http://news.rice.edu/wp-content/uploads/2014/09/0924_BIOCHAR-b1.jpg

CAPTION: Biochar is ground charcoal that's added to soil to both boost crop yields and counter global climate change.

CREDIT: Jeff Fitlow/Rice University

http://news.rice.edu/wp-content/uploads/2014/09/0924_BIOCHAR-hydro-lg.jpg

CAPTION: Rebecca Barnes (front) and Morgan Gallagher conduct hydrology experiments at Rice University in 2013.

CREDIT: R. Barnes/Colorado College

http://news.rice.edu/wp-content/uploads/2014/09/0323_BIOCHAR-Barnes-lg.jpg

CAPTION: Rebecca Barnes

CREDIT: R. Barnes/Colorado College

http://news.rice.edu/wp-content/uploads/2014/09/0323_BIOCHAR-Masiello4-lg.jpg

CAPTION: Caroline Masiello

CREDIT: Jeff Fitlow/Rice University

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

About Rice University

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go here.

About Colorado College

Colorado College is a nationally prominent, four-year liberal arts college that was founded in Colorado Springs in 1874. The college operates on the innovative Block Plan, in which its approximately 2,000 undergraduate students study one course at a time in intensive 3½-week segments. The college also offers a Master of Arts degree in teaching. For more information, visit http://www.ColoradoCollege.edu

David Ruth | Eurek Alert!

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>