Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Binghamton researcher studies oldest fossil hominin ear bones ever recovered

14.05.2013
Recently published paper indicates discovery could yield important clues on origins of humankind

A new study, led by a Binghamton University anthropologist and published this week by the National Academy of Sciences, could shed new light on the earliest existence of humans. The study analyzed the tiny ear bones, the malleus, incus and stapes, from two species of early human ancestor in South Africa. The ear ossicles are the smallest bones in the human body and are among the rarest of human fossils recovered.

Unlike other bones of the skeleton, the ossicles are already fully formed and adult-sized at birth. This indicates that their size and shape is under very strong genetic control and, despite their small size, they hold a wealth of evolutionary information.

The study, led by Binghamton University anthropologist Rolf Quam, was carried out by an international team of researchers from institutions in the US, Italy and Spain. They analyzed several auditory ossicles representing the early hominin species Paranthropus robustus and Australopithecus africanus. The new study includes the oldest complete ossicular chain (i.e. all three ear bones) of a fossil hominin ever recovered. The bones date to around two million years ago and come from the well-known South African cave sites of Swartkrans and Sterkfontein, which have yielded abundant fossils of these early human ancestors.

The researchers report several significant findings from the study. The malleus is clearly human-like, and its size and shape can be easily distinguished from our closest living relatives, chimpanzees, gorillas and orangutans. Many aspects of the skull, teeth and skeleton in these early human ancestors remain quite primitive and ape-like, but the malleus is one of the very few features of these early hominins that is similar to our own species, Homo sapiens. Since both the early hominin species share this human-like malleus, the anatomical changes in this bone must have occurred very early in our evolutionary history. Says Quam, "Bipedalism (walking on two feet) and a reduction in the size of the canine teeth have long been held up as the "hallmark of humanity" since they seem to be present in the earliest human fossils recovered to date.

Our study suggests that the list may need to be updated to include changes in the malleus as well." More fossils from even earlier time periods are needed to corroborate this assertion, says Quam. In contrast to the malleus, the two other ear ossicles, the incus and stapes, appear more similar to chimpanzees, gorillas and orangutans. The ossicles, then, show an interesting mixture of ape-like and human-like features.

The anatomical differences from humans found in the ossicles, along with other differences in the outer, middle and inner ear, are consistent with different hearing capacities in these early hominin taxa compared to modern humans. Although the current study does not demonstrate this conclusively, the team plans on studying the functional aspects of the ear in these early hominins relying on 3D virtual reconstructions based on high resolution CT scans. The team has already applied this approach previously to the 500,000 year-old human fossils from the Sierra de Atapuerca in northern Spain. The fossils from this site represent the ancestors of the Neandertals, but the results suggested their hearing pattern already resembled Homo sapiens. Extending this type of analysis to Australopithecus and Paranthropus should provide new insight into when our modern human pattern of hearing may have evolved. The study has just been published in the Proceedings of the National Academy of Sciences.

To view, visit: http://www.pnas.org/content/early/2013/05/08/1303375110.full.pdf+html?sid=5497ce62-ef90-4d7b-b363-e707effb0318

Ryan Yarosh | EurekAlert!
Further information:
http://www.binghamton.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>