Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The biggest mass extinction and Pangea integration

04.11.2013
The mysterious relationship between Pangea integration and the biggest mass extinction happened 250 million years ago was tackled by Professor YIN Hongfu and Dr. SONG Haijun from State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences (Wuhan).

Their study shows that Pangea integration resulted in environmental deterioration which further caused that extinction. Their work, entitled "Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition", was published in SCIENCE CHINA Earth Sciences.2013, Vol 56(7).


Relationships between geosphere disturbances and mass extinction during the Late Permian and Early Triassic are shown.

Credit: ©Science China Press

The Pangea was integrated at about the beginning of Permian, and reached its acme during Late Permian to Early Triassic. Formation of the Pangea means that the scattered continents of the world gathered into one integrated continent with an area of nearly 200 million km2. Average thickness of such a giant continental lithosphere should be remarkably greater than that of each scattered continent.

Equilibrium principle implies that the thicker the lithosphere, the higher its portion over the equilibrium level, hence the average altitude of the Pangea should be much higher than the separated modern continents. Correspondingly, all oceans gathered to form the Panthalassa, which should be much deeper than modern oceans. The acme of Pangea and Panthalassa was thus a period of high continent and deep ocean, which should inevitably induce great regression and influence the earth's surface system, especially climate.

The Tunguss Trap of Siberia, the Emeishan Basalt erupted during the Pangea integration. Such global-scale volcanism should be evoked by mantle plume and related with integration of the Pangea. Volcanic activities would result in a series of extinction effects, including emission of large volume of CO2, CH4, NO2 and cyanides which would have caused green house effects, pollution by poisonous gases, damage of the ozone layer in the stratosphere, and enhancement the ultra-violet radiation.

Increase of CO2 concentration and other green house gases would have led to global warming, oxygen depletion and carbon cycle anomaly; physical and chemical anomalies in ocean (acidification, euxinia, low sulfate concentration, isotopic anomaly of organic nitrogen) and great regression would have caused marine extinction due to unadaptable environments, selective death and hypercapnia; continental aridity, disappearance of monsoon system and wild fire would have devastated the land vegetation, esp. the tropical rain forest.

The great global changes and mass extinction were the results of interaction among earth's spheres. Deteriorated relations among lithosphere, atmosphere, hydrosphere, and biosphere (including internal factors of organism evolution itself) accumulated until they exceeded the threshold, and exploded at the Permian-Triassic transition time. Interaction among bio- and geospheres is an important theme. However, the processes from inner geospheres to earth's surface system and further to organism evolution necessitate retardation in time and yields many uncertainties in causation. Most of the processes are now at a hypothetic stage and need more scientific examinations.

Corresponding author:

YIN Hongfu
hfyin@cug.edu.cn
See the article: Yin H F, Song H J. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Science China: Earth Sciences, 2013, 56: 1791-1803

http://earth.scichina.com:8080/sciDe/EN/10.1007/s11430-013-4624-3

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

Bei Yan | EurekAlert!
Further information:
http://www.scichina.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>