Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biggest breach of Earth's solar storm shield discovered

18.12.2008
Earth's magnetic field, which shields our planet from particles streaming outward from the Sun, often develops two holes that allow the largest leaks, according to researchers sponsored by NASA and the National Science Foundation.

"The discovery overturns a long-standing belief about how and when most of the solar particles penetrate Earth's magnetic field, and could be used to predict when solar storms will be severe.

Based on these results, we expect more severe storms during the upcoming solar cycle," said Vassilis Angelopoulos of the University of California, Los Angeles, Principal Investigator for NASA's THEMIS mission (Time History of Events and Macroscale Interactions during Substorms). THEMIS was used to discover the size of the leak.

Earth's magnetic field acts as a shield against the bombardment of particles continuously streaming from the sun. Because the solar particles (ions and electrons) are electrically charged, they feel magnetic forces and most are deflected by our planet's magnetic field. However, our magnetic field is a leaky shield and the number of particles breaching this shield depends on the orientation of the sun's magnetic field. It had been thought that when the sun's magnetic field is aligned with that of the Earth, the door is shut and that few if any solar particles enter Earth's magnetic shield. The door was thought to open up when the solar magnetic field direction points opposite to Earth's field, leading to more solar particles inside the shield.

Surprisingly, recent observations by the THEMIS spacecraft fleet demonstrate that the opposite is true. "Twenty times more solar particles cross the Earth's leaky magnetic shield when the sun's magnetic field is aligned with that of the Earth compared to when the two magnetic fields are oppositely directed," said Marit Oieroset of the University of California, Berkeley, lead author of one of two papers on this research, published May 2008 in Geophysical Research Letters.

Researchers have long suspected that this "closed door" entry mechanism might exist, but didn't know how important it was. "It's as if people knew there was a crack in a levy, but they did not know how much flooding it caused," said Oieroset.

Previous spacecraft could only sample a small part of this enormous layer of solar particles inside the Earth's magnetic shield, but the five spacecraft in the THEMIS fleet spanned the entire rapidly-growing layer to give definitive measurements.

While the THEMIS researchers discovered the size of the leak, they didn't know its location(s). This was discovered by Wenhui Li of the University of New Hampshire, Durham, N.H., and his team. They used a computer simulation to discover where two holes frequently develop in Earth's magnetic field, one at high latitude over the Northern hemisphere, and one at high latitude over the Southern hemisphere. The holes form over the daylit side of Earth, on the side of the magnetic shield facing the sun.

The simulation also showed how the leaks develop. As solar particles flow out from the sun, they carry solar magnetic fields past our planet. Li's team realized that the solar magnetic field drapes against Earth's field as it passes by. Even though the two fields point in the same direction at equatorial latitudes, they point in opposite directions at high latitudes, When compression forces the opposite fields together, they link up with each other in a process called magnetic reconnection. This process tears the two holes in Earth's magnetic field and appends the section of the solar field between the two holes to Earth's field, carrying the solar particles on this section into the magnetosphere, according to Li's team. "We've found if the door is closed, the sun tears down a wall. The crack is huge – about four times wider than Earth and more then seven Earth diameters long," said Li, whose paper will be published in an upcoming article of the Journal of Geophysical Research.

Solar particles by themselves don't cause severe space weather, but they get energized when the solar magnetic field becomes oppositely-directed to Earth's and reconnects in a different way. The energized particles then cause magnetic storms that can overload power lines with excess current, causing widespread blackouts. The particles also can cause radiation storms that present hazards to spacecraft in high orbits and astronauts passing through the storms on the way to the moon or other destinations in the solar system. "The more particles, the more severe the storm," said Joachim "Jimmy" Raeder of the University of New Hampshire, a co-author of Li's paper. "If the solar field has been aligned with the Earth's for a while, we now know Earth's field is heavily loaded with solar particles and primed for a strong storm. This discovery gives us a basic predictive capability for the severity of solar storms, similar to a hurricane forecaster's realization that warmer oceans set the stage for more intense hurricanes. In fact, we expect stronger storms in the upcoming solar cycle. The sun's magnetic field changes direction every cycle, and due to its new orientation in the upcoming cycle, we expect the clouds of particles ejected from the sun will have a field which is at first aligned with Earth, then becomes opposite as the cloud passes by."

Cynthia M. O'Carroll | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/themis/news/themis_leaky_shield.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>