Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biggest breach of Earth's solar storm shield discovered

18.12.2008
Earth's magnetic field, which shields our planet from particles streaming outward from the Sun, often develops two holes that allow the largest leaks, according to researchers sponsored by NASA and the National Science Foundation.

"The discovery overturns a long-standing belief about how and when most of the solar particles penetrate Earth's magnetic field, and could be used to predict when solar storms will be severe.

Based on these results, we expect more severe storms during the upcoming solar cycle," said Vassilis Angelopoulos of the University of California, Los Angeles, Principal Investigator for NASA's THEMIS mission (Time History of Events and Macroscale Interactions during Substorms). THEMIS was used to discover the size of the leak.

Earth's magnetic field acts as a shield against the bombardment of particles continuously streaming from the sun. Because the solar particles (ions and electrons) are electrically charged, they feel magnetic forces and most are deflected by our planet's magnetic field. However, our magnetic field is a leaky shield and the number of particles breaching this shield depends on the orientation of the sun's magnetic field. It had been thought that when the sun's magnetic field is aligned with that of the Earth, the door is shut and that few if any solar particles enter Earth's magnetic shield. The door was thought to open up when the solar magnetic field direction points opposite to Earth's field, leading to more solar particles inside the shield.

Surprisingly, recent observations by the THEMIS spacecraft fleet demonstrate that the opposite is true. "Twenty times more solar particles cross the Earth's leaky magnetic shield when the sun's magnetic field is aligned with that of the Earth compared to when the two magnetic fields are oppositely directed," said Marit Oieroset of the University of California, Berkeley, lead author of one of two papers on this research, published May 2008 in Geophysical Research Letters.

Researchers have long suspected that this "closed door" entry mechanism might exist, but didn't know how important it was. "It's as if people knew there was a crack in a levy, but they did not know how much flooding it caused," said Oieroset.

Previous spacecraft could only sample a small part of this enormous layer of solar particles inside the Earth's magnetic shield, but the five spacecraft in the THEMIS fleet spanned the entire rapidly-growing layer to give definitive measurements.

While the THEMIS researchers discovered the size of the leak, they didn't know its location(s). This was discovered by Wenhui Li of the University of New Hampshire, Durham, N.H., and his team. They used a computer simulation to discover where two holes frequently develop in Earth's magnetic field, one at high latitude over the Northern hemisphere, and one at high latitude over the Southern hemisphere. The holes form over the daylit side of Earth, on the side of the magnetic shield facing the sun.

The simulation also showed how the leaks develop. As solar particles flow out from the sun, they carry solar magnetic fields past our planet. Li's team realized that the solar magnetic field drapes against Earth's field as it passes by. Even though the two fields point in the same direction at equatorial latitudes, they point in opposite directions at high latitudes, When compression forces the opposite fields together, they link up with each other in a process called magnetic reconnection. This process tears the two holes in Earth's magnetic field and appends the section of the solar field between the two holes to Earth's field, carrying the solar particles on this section into the magnetosphere, according to Li's team. "We've found if the door is closed, the sun tears down a wall. The crack is huge – about four times wider than Earth and more then seven Earth diameters long," said Li, whose paper will be published in an upcoming article of the Journal of Geophysical Research.

Solar particles by themselves don't cause severe space weather, but they get energized when the solar magnetic field becomes oppositely-directed to Earth's and reconnects in a different way. The energized particles then cause magnetic storms that can overload power lines with excess current, causing widespread blackouts. The particles also can cause radiation storms that present hazards to spacecraft in high orbits and astronauts passing through the storms on the way to the moon or other destinations in the solar system. "The more particles, the more severe the storm," said Joachim "Jimmy" Raeder of the University of New Hampshire, a co-author of Li's paper. "If the solar field has been aligned with the Earth's for a while, we now know Earth's field is heavily loaded with solar particles and primed for a strong storm. This discovery gives us a basic predictive capability for the severity of solar storms, similar to a hurricane forecaster's realization that warmer oceans set the stage for more intense hurricanes. In fact, we expect stronger storms in the upcoming solar cycle. The sun's magnetic field changes direction every cycle, and due to its new orientation in the upcoming cycle, we expect the clouds of particles ejected from the sun will have a field which is at first aligned with Earth, then becomes opposite as the cloud passes by."

Cynthia M. O'Carroll | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/themis/news/themis_leaky_shield.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>