Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bering Sea was ice-free and full of life during last warm period

14.12.2010
Deep sediment cores retrieved from the Bering Sea floor indicate that the region was ice-free all year and biological productivity was high during the last major warm period in Earth's climate history.

Christina Ravelo, professor of ocean sciences at the University of California, Santa Cruz, will present the new findings in a talk on December 13 at the fall meeting of the American Geophysical Union (AGU) in San Francisco.

Ravelo and co-chief scientist Kozo Takahashi of Kyushu University, Japan, led a nine-week expedition of the Integrated Ocean Drilling Program (IODP) to the Bering Sea last summer aboard the research vessel JOIDES Resolution. The researchers drilled down 700 meters through rock and sludge to retrieve sediments deposited during the Pliocene Warm Period, 3.5 to 4.5 million years ago.

"Evidence from the Pliocene Warm Period is relevant to studies of current climate change because it was the last time in our Earth's history when global temperatures were higher than today," Ravelo said.

Carbon dioxide levels during the Pliocene Warm Period were also comparable to levels today, and average temperatures were a few degrees higher, she said. Climate scientists are interested in what this period may tell us about the effects of global warming, particularly in the polar regions. Current observations show more rapid warming in the Arctic compared to other places on Earth and compared to what was expected based on global climate models.

Ravelo's team found evidence of similar amplified warming at the poles during the Pliocene Warm Period. Analysis of the sediment samples indicated that average sea surface temperatures in the Bering Sea were at least 5 degrees Celsius warmer than today, while average global temperatures were only 3 degrees warmer than today.

Samples from the expedition showed evidence of consistently high biological productivity in the Bering Sea throughout the past five million years. The sediments contain fossils of plankton, such as diatoms, that suggest a robust ecology of organisms persisting from the start of the Pliocene Warm Period to the present. In addition, samples from the Pliocene Warm Period include deep-water organisms that require more oxygenated conditions than exist today, suggesting that the mixing of water layers in the Bering Sea was greater than it is now, Ravelo said.

"We usually think of the ocean as being more stratified during warm periods, with less vertical movement in the water column," she said. "If the ocean was actually overturning more during a period when it was warmer than today, then we may need to change our thinking about ocean circulation."

Today, the Bering Sea is ice-free only during the summer, but the sediment samples indicate it was ice-free year-round during the Pliocene Warm Period. According to Ravelo, the samples showed no evidence of the pebbles and other debris that ice floes carry from the land out to sea and deposit on the seafloor as they melt. In addition, the researchers didn't find any of the microorganisms typically associated with sea ice, she said.

"The information we found tells us quite a bit about what things were like during the last period of global warming. It should benefit the scientists today who are sorting out how ocean circulation and conditions at the poles change as the Earth warms," Ravelo said.

The expedition led by Ravelo and Takahashi was part of an ongoing program conducted by the IODP with funding from the National Science Foundation and support from the United States, Japan, and the European Union. The JOIDES Resolution is the only ship operated by the United States capable of taking undisturbed core samples at the depths required to study conditions during the Pliocene Warm Period. The current program will end in 2013, and planning for the next phase of ocean drilling is now under way.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>