Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bering Sea was ice-free and full of life during last warm period

14.12.2010
Deep sediment cores retrieved from the Bering Sea floor indicate that the region was ice-free all year and biological productivity was high during the last major warm period in Earth's climate history.

Christina Ravelo, professor of ocean sciences at the University of California, Santa Cruz, will present the new findings in a talk on December 13 at the fall meeting of the American Geophysical Union (AGU) in San Francisco.

Ravelo and co-chief scientist Kozo Takahashi of Kyushu University, Japan, led a nine-week expedition of the Integrated Ocean Drilling Program (IODP) to the Bering Sea last summer aboard the research vessel JOIDES Resolution. The researchers drilled down 700 meters through rock and sludge to retrieve sediments deposited during the Pliocene Warm Period, 3.5 to 4.5 million years ago.

"Evidence from the Pliocene Warm Period is relevant to studies of current climate change because it was the last time in our Earth's history when global temperatures were higher than today," Ravelo said.

Carbon dioxide levels during the Pliocene Warm Period were also comparable to levels today, and average temperatures were a few degrees higher, she said. Climate scientists are interested in what this period may tell us about the effects of global warming, particularly in the polar regions. Current observations show more rapid warming in the Arctic compared to other places on Earth and compared to what was expected based on global climate models.

Ravelo's team found evidence of similar amplified warming at the poles during the Pliocene Warm Period. Analysis of the sediment samples indicated that average sea surface temperatures in the Bering Sea were at least 5 degrees Celsius warmer than today, while average global temperatures were only 3 degrees warmer than today.

Samples from the expedition showed evidence of consistently high biological productivity in the Bering Sea throughout the past five million years. The sediments contain fossils of plankton, such as diatoms, that suggest a robust ecology of organisms persisting from the start of the Pliocene Warm Period to the present. In addition, samples from the Pliocene Warm Period include deep-water organisms that require more oxygenated conditions than exist today, suggesting that the mixing of water layers in the Bering Sea was greater than it is now, Ravelo said.

"We usually think of the ocean as being more stratified during warm periods, with less vertical movement in the water column," she said. "If the ocean was actually overturning more during a period when it was warmer than today, then we may need to change our thinking about ocean circulation."

Today, the Bering Sea is ice-free only during the summer, but the sediment samples indicate it was ice-free year-round during the Pliocene Warm Period. According to Ravelo, the samples showed no evidence of the pebbles and other debris that ice floes carry from the land out to sea and deposit on the seafloor as they melt. In addition, the researchers didn't find any of the microorganisms typically associated with sea ice, she said.

"The information we found tells us quite a bit about what things were like during the last period of global warming. It should benefit the scientists today who are sorting out how ocean circulation and conditions at the poles change as the Earth warms," Ravelo said.

The expedition led by Ravelo and Takahashi was part of an ongoing program conducted by the IODP with funding from the National Science Foundation and support from the United States, Japan, and the European Union. The JOIDES Resolution is the only ship operated by the United States capable of taking undisturbed core samples at the depths required to study conditions during the Pliocene Warm Period. The current program will end in 2013, and planning for the next phase of ocean drilling is now under way.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>