Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating the Radar: Getting a Jump on Storm Prediction

19.06.2009
Satellite observation of cloud temperatures may be able to accurately predict severe thunderstorms up to 45 minutes earlier than relying on traditional radar alone, say researchers at the University of Wisconsin-Madison Space Science and Engineering Center.

Scientists from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) have developed a way to measure temperature changes in the tops of clouds to improve forecast times for rapidly growing storms.

“The value of detecting and analyzing these changes is that we can get up to a 45-minute jump on radar detection of the same storm system. A ‘nowcast’ becomes a ‘forecast,’” says CIMSS scientist Wayne Feltz.

Clouds start cooling long before radar can identify them as storms. As a warm cumulus cloud grows and expands upward into higher altitudes, it will rapidly cool. Rapid cloud-top cooling indicates that a cloud top is rising into the frigid upper reaches of the atmosphere and can reveal the formation of a severe storm.

Cloud temperatures can be measured by the wavelengths of light they radiate in the near-infrared and infrared frequencies. Current geostationary satellites — satellites that stay over the same location on Earth — over the U.S. can discern five different bands in these frequencies, each band revealing a different state of cloud development. Looking down from space, the satellite can determine whether the cloud top consists of liquid water, supercooled water or even ice.

By running high-speed five-minute satellite scans through a carefully designed computer algorithm, the scientists can quickly analyze cloud top temperature changes to look for signs of storm formation. “We are looking for transitions,” says Feltz. “Does the cloud top consist of liquid water that is cooling rapidly? That could signal a possible convective initiation.”

Feltz and other CIMSS colleagues, including Kris Bedka and National Oceanic and Atmospheric Administration (NOAA) scientist Tim Schmit, demonstrated their “Convective Initiation Nowcast” and “Cloud Top Cooling Rate” products at NOAA’s annual Hazardous Weather Testbed (HWT), held May 4-June 5 at the Storm Prediction Center in Norman, Okla.

The HWT is designed to accelerate the transition of promising new meteorological insights and technologies into advance forecasting and warnings for hazardous weather events throughout the United States.

“The Hazardous Weather Testbed brings in outside experts in all areas, a melting pot of people to encourage collaboration and interactions and proposal opportunities,” Feltz says. “The point of this is working with forecasters in the field — the Weather Service, the Storm Prediction Center, the Hurricane Center — whoever is interested in looking at more advanced satellite products.”

CONTACT: Wayne Feltz, wayne.feltz@ssec.wisc.edu, 608-265-6283

Mark Hobson | Newswise Science News
Further information:
http://www.wisc.edu
http://hwt.nssl.noaa.gov/Spring_2009

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>