Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating the Radar: Getting a Jump on Storm Prediction

19.06.2009
Satellite observation of cloud temperatures may be able to accurately predict severe thunderstorms up to 45 minutes earlier than relying on traditional radar alone, say researchers at the University of Wisconsin-Madison Space Science and Engineering Center.

Scientists from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) have developed a way to measure temperature changes in the tops of clouds to improve forecast times for rapidly growing storms.

“The value of detecting and analyzing these changes is that we can get up to a 45-minute jump on radar detection of the same storm system. A ‘nowcast’ becomes a ‘forecast,’” says CIMSS scientist Wayne Feltz.

Clouds start cooling long before radar can identify them as storms. As a warm cumulus cloud grows and expands upward into higher altitudes, it will rapidly cool. Rapid cloud-top cooling indicates that a cloud top is rising into the frigid upper reaches of the atmosphere and can reveal the formation of a severe storm.

Cloud temperatures can be measured by the wavelengths of light they radiate in the near-infrared and infrared frequencies. Current geostationary satellites — satellites that stay over the same location on Earth — over the U.S. can discern five different bands in these frequencies, each band revealing a different state of cloud development. Looking down from space, the satellite can determine whether the cloud top consists of liquid water, supercooled water or even ice.

By running high-speed five-minute satellite scans through a carefully designed computer algorithm, the scientists can quickly analyze cloud top temperature changes to look for signs of storm formation. “We are looking for transitions,” says Feltz. “Does the cloud top consist of liquid water that is cooling rapidly? That could signal a possible convective initiation.”

Feltz and other CIMSS colleagues, including Kris Bedka and National Oceanic and Atmospheric Administration (NOAA) scientist Tim Schmit, demonstrated their “Convective Initiation Nowcast” and “Cloud Top Cooling Rate” products at NOAA’s annual Hazardous Weather Testbed (HWT), held May 4-June 5 at the Storm Prediction Center in Norman, Okla.

The HWT is designed to accelerate the transition of promising new meteorological insights and technologies into advance forecasting and warnings for hazardous weather events throughout the United States.

“The Hazardous Weather Testbed brings in outside experts in all areas, a melting pot of people to encourage collaboration and interactions and proposal opportunities,” Feltz says. “The point of this is working with forecasters in the field — the Weather Service, the Storm Prediction Center, the Hurricane Center — whoever is interested in looking at more advanced satellite products.”

CONTACT: Wayne Feltz, wayne.feltz@ssec.wisc.edu, 608-265-6283

Mark Hobson | Newswise Science News
Further information:
http://www.wisc.edu
http://hwt.nssl.noaa.gov/Spring_2009

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>