Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating the Radar: Getting a Jump on Storm Prediction

19.06.2009
Satellite observation of cloud temperatures may be able to accurately predict severe thunderstorms up to 45 minutes earlier than relying on traditional radar alone, say researchers at the University of Wisconsin-Madison Space Science and Engineering Center.

Scientists from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) have developed a way to measure temperature changes in the tops of clouds to improve forecast times for rapidly growing storms.

“The value of detecting and analyzing these changes is that we can get up to a 45-minute jump on radar detection of the same storm system. A ‘nowcast’ becomes a ‘forecast,’” says CIMSS scientist Wayne Feltz.

Clouds start cooling long before radar can identify them as storms. As a warm cumulus cloud grows and expands upward into higher altitudes, it will rapidly cool. Rapid cloud-top cooling indicates that a cloud top is rising into the frigid upper reaches of the atmosphere and can reveal the formation of a severe storm.

Cloud temperatures can be measured by the wavelengths of light they radiate in the near-infrared and infrared frequencies. Current geostationary satellites — satellites that stay over the same location on Earth — over the U.S. can discern five different bands in these frequencies, each band revealing a different state of cloud development. Looking down from space, the satellite can determine whether the cloud top consists of liquid water, supercooled water or even ice.

By running high-speed five-minute satellite scans through a carefully designed computer algorithm, the scientists can quickly analyze cloud top temperature changes to look for signs of storm formation. “We are looking for transitions,” says Feltz. “Does the cloud top consist of liquid water that is cooling rapidly? That could signal a possible convective initiation.”

Feltz and other CIMSS colleagues, including Kris Bedka and National Oceanic and Atmospheric Administration (NOAA) scientist Tim Schmit, demonstrated their “Convective Initiation Nowcast” and “Cloud Top Cooling Rate” products at NOAA’s annual Hazardous Weather Testbed (HWT), held May 4-June 5 at the Storm Prediction Center in Norman, Okla.

The HWT is designed to accelerate the transition of promising new meteorological insights and technologies into advance forecasting and warnings for hazardous weather events throughout the United States.

“The Hazardous Weather Testbed brings in outside experts in all areas, a melting pot of people to encourage collaboration and interactions and proposal opportunities,” Feltz says. “The point of this is working with forecasters in the field — the Weather Service, the Storm Prediction Center, the Hurricane Center — whoever is interested in looking at more advanced satellite products.”

CONTACT: Wayne Feltz, wayne.feltz@ssec.wisc.edu, 608-265-6283

Mark Hobson | Newswise Science News
Further information:
http://www.wisc.edu
http://hwt.nssl.noaa.gov/Spring_2009

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>