Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad sign for global warming: Thawing permafrost holds vast carbon pool

05.09.2008
Permafrost blanketing the northern hemisphere contains more than twice the amount of carbon in the atmosphere, making it a potentially mammoth contributor to global climate change depending on how quickly it thaws.

So concludes a group of nearly two dozen scientists in a paper appearing this week in the journal Bioscience. The lead author is Ted Schuur, an associate professor of ecology at the University of Florida.

Previous studies by Schuur and his colleagues elsewhere have estimated the carbon contained in permafrost in northeast Siberia. The new research expands that estimate to the rest of the permafrost-covered northern latitudes of Russia, Europe, Greenland and North America. The estimated 1,672 billion metric tons of carbon locked up in the permafrost is more than double the 780 billion tons in the atmosphere today.

"It's bigger than we thought," Schuur said.

Permafrost is frozen ground that contains roots and other soil organic matter that decompose extremely slowly. When it thaws, bacteria and fungi break down carbon contained in this organic matter much more quickly, releasing it to the atmosphere as carbon dioxide or methane, both greenhouse gases.

Scientists have become increasingly concerned about this natural process as temperatures in the world's most northern latitudes have warmed. Just last week, it was announced that the amount of sea ice covering the Arctic may reach a new low this summer. Meanwhile, there is widespread consensus that the highest latitudes will warm the fastest, a process already visible in the accelerated thawing of glaciers worldwide.

Two years ago, Schuur and two colleagues authored a paper in the journal Science estimating that 400,000 square miles of northeast Siberian permafrost contained 500 billion metric tons of carbon. For this new paper, scientists combined an extensive database of measurements of carbon content in different types of permafrost soils with the estimated spatial extent of those soils in Russia, Europe, Greenland and North America.

Schuur said the researchers estimated the carbon contained in permafrost to a depth of three meters, two meters deeper than many earlier estimates. Although permafrost depths vary greatly with location, basing the estimate on three-meter depth "better acknowledges the true size of the permafrost carbon pool," Schuur said.

The new estimate is important because it mirrors other climate change science suggesting that at a certain tipping point, natural processes could contribute significant amounts of greenhouse gases, supplementing human-influenced, industrial processes that release fossil fuel carbon, Schuur said.

"There are relatively few people living in the permafrost zone," Schuur said. "But we could have significant emissions of carbon from thawing permafrost in these remote regions."

How fast the permafrost would release its carbon is a hugely important question.

Schuur said the burning of fossil fuels contributes about 8.5 billion tons of carbon dioxide each year. Deforestation of the tropical forests and replacement of the forest with pasture or other agriculture is thought to add about 1.5 billion tons per year. How much permafrost will add will depend on how fast it thaws, but Schuur said his research indicates the figure could approach .8-1.1 billion tons per year in the future if permafrost continues to thaw.

With the Arctic warming and permafrost thawing, shrubs and trees are likely to grow on ground formerly occupied by tundra – indeed, such a transformation has already been observed in parts of Alaska, where some arctic tundra is becoming shrub land.

Because plants take in carbon dioxide and release oxygen, it might appear they could compensate for whatever carbon is released by the thawed permafrost. But Schuur said the amount of carbon stored in the permafrost is far greater than what is found in shrubs or trees.

For example, he said, a mature boreal forest may contain five kilograms per meter squared of stored carbon. But the same area of permafrost soil can contain 44 kilograms, and 80 percent of that could be lost over long-term warming. "The bottom line," he said, "is that you can't grow a big enough forest to offset the carbon release from the permafrost."

Ted Schuur | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>