Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad Housekeeping: Dust in Earth’s Atmosphere Has Doubled Since the Start of the 20Th Century

10.01.2011
The amount of dust in the Earth’s atmosphere doubled since the beginning of the 20th century and the dramatic increase is influencing climate and ecology around the world, according to a new study led by Natalie Mahowald, Cornell associate professor of earth and atmospheric sciences.

It’s the first study to trace the fluctuation of a natural (not human-caused) aerosol around the globe over the course of a century. Mahowald used available data and computer modeling to estimate the amount of desert dust, or soil particles in the atmosphere, throughout the 20th century. She presented the research at the fall meeting of the American Geophysical Union in San Francisco Dec. 13.

Desert dust and climate influence each other directly and indirectly through a host of intertwined systems. Dust limits the amount of solar radiation that reaches the Earth, for example, a factor that could mask the warming effects of increasing atmospheric carbon dioxide. It also can influence clouds and precipitation, leading to droughts; which, in turn, leads to desertification and more dust.

Ocean chemistry is also intricately involved. Dust is a major source of iron, which is vital for plankton and other organisms that draw carbon out of the atmosphere.

To measure fluctuations in desert dust over the century, the researchers gathered existing data from ice cores, lake sediment and coral, each of which contain information about past concentrations of desert dust in the region.

They then linked each sample with its likely source region and calculated the rate of dust deposition over time. Applying components of a computer modeling system known as the Community Climate System Model, the researchers reconstructed the influence of desert dust on temperature, precipitation, ocean iron deposition and terrestrial carbon uptake over time.

Among their results, the researchers found that regional changes in temperature and precipitation caused a global reduction in terrestrial carbon uptake of 6 parts per million (ppm) over the 20th century. The model also showed that dust deposited in oceans increased carbon uptake from the atmosphere by 6 percent, or 4 ppm, over the same time period.

While the majority of research related to aerosol impacts on climate is focused on anthropogenic aerosols (those directly emitted by humans through combustion), Mahowald said, the study highlights the important role of natural aerosols as well. “Now we finally have some information on how the desert dust is fluctuating. This has a really big impact for the understanding of climate sensitivity,” she said.

The study was funded in part by the National Science Foundation, NASA and the U.K. Natural Environment Research Council.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>