Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad Housekeeping: Dust in Earth’s Atmosphere Has Doubled Since the Start of the 20Th Century

10.01.2011
The amount of dust in the Earth’s atmosphere doubled since the beginning of the 20th century and the dramatic increase is influencing climate and ecology around the world, according to a new study led by Natalie Mahowald, Cornell associate professor of earth and atmospheric sciences.

It’s the first study to trace the fluctuation of a natural (not human-caused) aerosol around the globe over the course of a century. Mahowald used available data and computer modeling to estimate the amount of desert dust, or soil particles in the atmosphere, throughout the 20th century. She presented the research at the fall meeting of the American Geophysical Union in San Francisco Dec. 13.

Desert dust and climate influence each other directly and indirectly through a host of intertwined systems. Dust limits the amount of solar radiation that reaches the Earth, for example, a factor that could mask the warming effects of increasing atmospheric carbon dioxide. It also can influence clouds and precipitation, leading to droughts; which, in turn, leads to desertification and more dust.

Ocean chemistry is also intricately involved. Dust is a major source of iron, which is vital for plankton and other organisms that draw carbon out of the atmosphere.

To measure fluctuations in desert dust over the century, the researchers gathered existing data from ice cores, lake sediment and coral, each of which contain information about past concentrations of desert dust in the region.

They then linked each sample with its likely source region and calculated the rate of dust deposition over time. Applying components of a computer modeling system known as the Community Climate System Model, the researchers reconstructed the influence of desert dust on temperature, precipitation, ocean iron deposition and terrestrial carbon uptake over time.

Among their results, the researchers found that regional changes in temperature and precipitation caused a global reduction in terrestrial carbon uptake of 6 parts per million (ppm) over the 20th century. The model also showed that dust deposited in oceans increased carbon uptake from the atmosphere by 6 percent, or 4 ppm, over the same time period.

While the majority of research related to aerosol impacts on climate is focused on anthropogenic aerosols (those directly emitted by humans through combustion), Mahowald said, the study highlights the important role of natural aerosols as well. “Now we finally have some information on how the desert dust is fluctuating. This has a really big impact for the understanding of climate sensitivity,” she said.

The study was funded in part by the National Science Foundation, NASA and the U.K. Natural Environment Research Council.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>