Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to the future: Scientists look into Earth's "Deep Time" to predict future effects of climate change

13.08.2013
Express concern for Earth's ability to handle rapid changes

Climate change alters the way in which species interact with one another--a reality that applies not just to today or to the future, but also to the past, according to a paper published by a team of researchers in this week's issue of the journal Science.


Time spiral: looking back through time to understand future climate change.
Credit: NASA

"We found that, at all time scales, climate change can alter biotic interactions in very complex ways," said paleoecologist Jessica Blois of the University of California, Merced, the paper's lead author.

"If we don't incorporate this information when we're anticipating future changes, we're missing a big piece of the puzzle."

Blois asked for input from researchers who study "deep time," or the very distant past, as well as those who study the present, to help make predictions about what the future holds for life on Earth as climate shifts.

Co-authors of the paper are Phoebe Zarnetske of Yale University, Matthew Fitzpatrick of the University of Maryland, and Seth Finnegan of the University of California, Berkeley.

"Climate change and other human influences are altering Earth's living systems in big ways, such as changes in growing seasons and the spread of invasive species," said Alan Tessier, program director in the National Science Foundation's (NSF) Division of Environmental Biology, which co-funded the research with NSF's Division of Earth Sciences.

"This paper highlights the value of using information about past episodes of rapid change from Earth's history to help predict future changes to our planet's ecosystems."

Scientists are seeing responses in many species, Blois said, including plants that have never been found in certain climates--such as palms in Sweden--and animals like pikas moving to higher elevations as their habitats grow too warm.

"The worry is that the rate of current and future climate change is more than species can handle," Blois said.

The researchers are studying how species interactions may change between predators and prey, and between plants and pollinators, and how to translate data from the past and present into future models.

"One of the most compelling current questions science can ask is how ecosystems will respond to climate change," said Lisa Boush, program director in NSF's Division of Earth Sciences.

"These researchers address this using the fossil record and its rich history," said Boush. "They show that climate change has altered biological interactions in the past, driving extinction, evolution and the distribution of species.

"Their study allows us to better understand how modern-day climate change might influence the future of biological systems and the rate at which that change will occur."

While more research is needed, Blois said, changes can be observed today as well as in the past, although it's harder to gather information from incomplete fossil records.

Looking back, there were big changes at the end of major climate change periods, such as the end of the last Ice Age when large herbivores went extinct.

Without those mega-eaters to keep certain plants at bay, new communities of flora developed, most of which in turn are now gone.

"People used to think climate was the major driver of all these changes," Blois said, "but it's not just climate. It's also extinction of the megafauna, changes in the frequency of natural fires, and expansion of human populations. They're all linked."

People are comfortable with the way things have been, said Blois. "We've known where to plant crops, for example, and where to find water."

Now we need to know how to respond, she said, to changes that are already happening--and to those coming in the near future.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Lorena Anderson, UC-Merced (209) 228-4406 landerson4@ucmerced.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=128632&org=NSF&from=news

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>