Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AWI researchers decipher climate paradox from the Miocene

11.04.2014

Growth of Antarctic ice sheet triggered warming in the Southern Ocean

Scientists of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have deciphered a supposed climate paradox from the Miocene era by means of complex model simulations.


The Southern Ocean

The expansion of the Antarctic ice shield 14 million years ago was followed by a warming of the Southern ocean's surface temperature. Photo: Frank Roedel, Alfred-Wegener-Institut


The Filchner-Ronne shelf ice

The Filchner-Ronne shelf ice is part of the Antarctic ice shield, which expanded to its near-modern volume 14 million years ago. Photo: Ralph Timmermann, Alfred-Wegener-Institut

When the Antarctic ice sheet grew to its present-day size around 14 million years ago, it did not get colder everywhere on the Earth, but there were regions that became warmer. A physical contradiction?

No, as AWI experts now found out, the expansion of the ice sheet on the Antarctic continent triggered changes in winds, ocean currents and sea ice in the Southern Ocean that in the end led to the apparently contrary developments. The scientists report this in a new study published online in the journal Nature Geosciences.

From a geological perspective, the ice sheet of Antarctica is still relatively young. As climate researchers know from sediment samples and calcareous Foraminifera shells, the ice sheet grew to its present-day size around 14 million years ago. At the same time the surface temperature of the Southern Ocean rose by up to three degrees Celsius back then – a seemingly contradictory development, for which climate scientists had no logical explanation for a long time.

“If you imagine that the Antarctic ice sheet grew to its present size in a period of 100,000 years, it seems reasonable to suppose that self-reinforcing climate processes set in during this growth period and further boosted the cooling effect. One could assume, for instance, that the expanding ice sheet reflected more and more solar energy into space, as a result of which the air over the continent became colder and strong offshore winds swept over the ocean, cooled the water and created a huge amount of sea ice. Our climate data, however, paint a different picture,” says AWI climate researcher Dr. Gregor Knorr.

He and his AWI colleague Prof. Dr. Gerrit Lohmann succeeded in depicting the climate conditions at that time in a coupled atmosphere-ocean model and in this way examined what changes the formation of the Antarctic ice sheet triggered in the climate system.

“Our simulation results show that the air temperature over the continent actually decreased by up to 22 degrees Celsius when the ice sheet grew, which led to cooling in some regions of the Southern Ocean. At the same time, however, the surface temperature in the Weddell Sea rose by up to six degrees Celsius,” says Gregor Knorr.

The AWI climate scientists looked for the causes of these contrary changes in their model experiments and found them in the wind. “The expansion of the Antarctic ice sheet led to changes in the wind patterns over the Weddell Sea, for example. As a consequence, there was a shift in the flow of warm water towards the pole and the sea ice in this marine region declined,” explains the AWI climate modeller.

These changes on the surface of the ocean brought about further changes in deep water, which in turn boosted the temperature rise in the surface water in a way unknown to the researchers up to now.

“Our model calculations helped us to develop a new understanding of the Earth system processes back then. Today we can explain what influence the formation of the Antarctic ice sheet had on temperature curves in the Southern Ocean of that time and how the recorded climate changes came about in marine sediment cores,” says Gregor Knorr.

At the same time a great challenge arises for climate scientists as a consequence of these new insights. “On the one hand, our results show that we can understand climate processes by means of models to interpret data from climate history. On the other hand, the results also confirm that feedback mechanisms between individual climate factors are substantially more complex than we had previously assumed,” says Gerrit Lohmann.

Can these new model calculations and insights be used for forecasts regarding current climate change? Gregor Knorr: “No, not directly. Models used to simulate climate change scenarios for the coming 100 years have a much finer resolution and ice sheet changes are not taken into account. For us it was important to gain a better understanding of how the climate system reacts to dramatic changes over a period of 100,000 years and more. Nevertheless, we cannot rule out that similar mechanisms might also play a role for climate changes in the distant future.”

Notes for Editors:
Please find printable images at http://www.awi.de/en/news/press_releases/. The original paper was published under the following title in the online portal of Nature Geoscience on 6 April 2014:

Gregor Knorr / Gerrit Lohmann: Climate Warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, Vol. 7, April 2014, DOI: 10.1038/NGEO2119 (Link: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2119.html)

Your scientific contact persons at the Alfred Wegener Institute are:

• Dr. Gregor Knorr (tel.: 0049 471 4831-1769, e-mail: Gregor.Knorr@awi.de)
• Prof. Dr. Gerrit Lohmann (tel.: 0049 471 4831-1758, e-mail: Gerrit.Lohmann@awi.de)

Your contact person in the Dept. of Communications and Media Relations is Sina Löschke , tel. 0049 471 4831-2008 (e-mail: medien@awi.de).

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

Further reports about: AWI Antarctic Earth Helmholtz Helmholtz-Zentrum Meeresforschung Miocene Ocean mechanisms processes temperature

More articles from Earth Sciences:

nachricht The Arctic: Interglacial period with a break
28.05.2015 | Goethe-Universität Frankfurt am Main

nachricht Over 70% of glacier volume in Everest region could be lost by 2100
27.05.2015 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>