Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AWI researchers decipher climate paradox from the Miocene

11.04.2014

Growth of Antarctic ice sheet triggered warming in the Southern Ocean

Scientists of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have deciphered a supposed climate paradox from the Miocene era by means of complex model simulations.


The Southern Ocean

The expansion of the Antarctic ice shield 14 million years ago was followed by a warming of the Southern ocean's surface temperature. Photo: Frank Roedel, Alfred-Wegener-Institut


The Filchner-Ronne shelf ice

The Filchner-Ronne shelf ice is part of the Antarctic ice shield, which expanded to its near-modern volume 14 million years ago. Photo: Ralph Timmermann, Alfred-Wegener-Institut

When the Antarctic ice sheet grew to its present-day size around 14 million years ago, it did not get colder everywhere on the Earth, but there were regions that became warmer. A physical contradiction?

No, as AWI experts now found out, the expansion of the ice sheet on the Antarctic continent triggered changes in winds, ocean currents and sea ice in the Southern Ocean that in the end led to the apparently contrary developments. The scientists report this in a new study published online in the journal Nature Geosciences.

From a geological perspective, the ice sheet of Antarctica is still relatively young. As climate researchers know from sediment samples and calcareous Foraminifera shells, the ice sheet grew to its present-day size around 14 million years ago. At the same time the surface temperature of the Southern Ocean rose by up to three degrees Celsius back then – a seemingly contradictory development, for which climate scientists had no logical explanation for a long time.

“If you imagine that the Antarctic ice sheet grew to its present size in a period of 100,000 years, it seems reasonable to suppose that self-reinforcing climate processes set in during this growth period and further boosted the cooling effect. One could assume, for instance, that the expanding ice sheet reflected more and more solar energy into space, as a result of which the air over the continent became colder and strong offshore winds swept over the ocean, cooled the water and created a huge amount of sea ice. Our climate data, however, paint a different picture,” says AWI climate researcher Dr. Gregor Knorr.

He and his AWI colleague Prof. Dr. Gerrit Lohmann succeeded in depicting the climate conditions at that time in a coupled atmosphere-ocean model and in this way examined what changes the formation of the Antarctic ice sheet triggered in the climate system.

“Our simulation results show that the air temperature over the continent actually decreased by up to 22 degrees Celsius when the ice sheet grew, which led to cooling in some regions of the Southern Ocean. At the same time, however, the surface temperature in the Weddell Sea rose by up to six degrees Celsius,” says Gregor Knorr.

The AWI climate scientists looked for the causes of these contrary changes in their model experiments and found them in the wind. “The expansion of the Antarctic ice sheet led to changes in the wind patterns over the Weddell Sea, for example. As a consequence, there was a shift in the flow of warm water towards the pole and the sea ice in this marine region declined,” explains the AWI climate modeller.

These changes on the surface of the ocean brought about further changes in deep water, which in turn boosted the temperature rise in the surface water in a way unknown to the researchers up to now.

“Our model calculations helped us to develop a new understanding of the Earth system processes back then. Today we can explain what influence the formation of the Antarctic ice sheet had on temperature curves in the Southern Ocean of that time and how the recorded climate changes came about in marine sediment cores,” says Gregor Knorr.

At the same time a great challenge arises for climate scientists as a consequence of these new insights. “On the one hand, our results show that we can understand climate processes by means of models to interpret data from climate history. On the other hand, the results also confirm that feedback mechanisms between individual climate factors are substantially more complex than we had previously assumed,” says Gerrit Lohmann.

Can these new model calculations and insights be used for forecasts regarding current climate change? Gregor Knorr: “No, not directly. Models used to simulate climate change scenarios for the coming 100 years have a much finer resolution and ice sheet changes are not taken into account. For us it was important to gain a better understanding of how the climate system reacts to dramatic changes over a period of 100,000 years and more. Nevertheless, we cannot rule out that similar mechanisms might also play a role for climate changes in the distant future.”

Notes for Editors:
Please find printable images at http://www.awi.de/en/news/press_releases/. The original paper was published under the following title in the online portal of Nature Geoscience on 6 April 2014:

Gregor Knorr / Gerrit Lohmann: Climate Warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, Vol. 7, April 2014, DOI: 10.1038/NGEO2119 (Link: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2119.html)

Your scientific contact persons at the Alfred Wegener Institute are:

• Dr. Gregor Knorr (tel.: 0049 471 4831-1769, e-mail: Gregor.Knorr@awi.de)
• Prof. Dr. Gerrit Lohmann (tel.: 0049 471 4831-1758, e-mail: Gerrit.Lohmann@awi.de)

Your contact person in the Dept. of Communications and Media Relations is Sina Löschke , tel. 0049 471 4831-2008 (e-mail: medien@awi.de).

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

Further reports about: AWI Antarctic Earth Helmholtz Helmholtz-Zentrum Meeresforschung Miocene Ocean mechanisms processes temperature

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>