Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autosub6000 dives to depth of 3.5 miles

30.10.2009
The United Kingdom's deepest diving Autonomous Underwater Vehicle (AUV), Autosub6000, has been put through its paces during an extremely successful engineering trials cruise on the RRS Discovery, 27 September to 17 October 2009.

Autosub6000 was working in regions of the Iberian Abyssal Plain in the North Atlantic deeper than 5600 metres and also around the steep and rugged terrain of the Casablanca Seamount, between Madeira and Morocco. The vehicle was designed and constructed by engineers at the Underwater Systems Laboratory in the National Oceanography Centre, Southampton.

Highlights:

- Operating at 5600 metres depth. Very few (if any) AUVs have ever operated autonomously at this depth.

- Survey at 3 metre altitude - paving the way for deep ocean photographic surveys.

- Terrain following at 10 metre altitude over very rough relief.
Testing improved fault detection software so that the AUV can recover from hardware faults.

- Testing of recently fitted magnetometer, turbidity and precision salinity sensors.

One of the main goals of the Autosub6000 engineering trials was the demonstration of the accessibility of deep ocean regions approaching the 6000 metre design depth limit. On 3 October 2009, the AUV descended and reached it's pre-programmed target depth of 5525 metres in 1.5 hours. At this point, a navigation update procedure was undertaken to update and correct for the Autosub6000's drift which was incurred as it descended through the moving water column. After 2.5 hours from deployment, the Autosub6000 was on station at a depth of 5600 metres, positioned to accuracies of a few metres, and ready to start collecting scientific data.

Autosub6000 has been enhanced with a forward-looking vertically scanning obstacle-detection sonar and improved terrain-following control software, giving the AUV the ability to operate safely, closer to the seabed. This was demonstrated at low altitudes in the steep and rugged slopes of the Casablanca Seamount with a 10 metre altitude run starting at 3000 metres depth and rising up to 700 metres depth over a course of 7.5 kilometres. The ability of Autosub6000 to perform low-altitude colour photographic surveys was demonstrated on the more level summit regions of the Casablanca Seamount with low-speed surveys at altitudes of as low as 3 metres.

Steve McPhail, Autosub6000 project leader, said, "Apart from the correct functioning of the vehicle during the trials at extreme depths, what particularly pleased me was that we have now developed the control and obstacle avoidance systems such that we have the confidence to send the AUV into a hostile and rugged terrain. This will lead to more challenging and interesting scientific campaigns in the future."

Autosub6000 is now being prepared for a cruise on board the RRS James Cook to the Caribbean Sea near the Cayman Islands in April 2010, where it will be used in conjunction with the remotely operated vehicle Isis to search for deep hydrothermal vents.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Autosub6000 project leader:
Steve McPhail: s.mcphail@noc.soton.ac.uk (Tel. 023 8059 6370).
Images are available from the NOCS Press Office (Tel. 023 8059 6100).
The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>