Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autosub6000 dives to depth of 3.5 miles

30.10.2009
The United Kingdom's deepest diving Autonomous Underwater Vehicle (AUV), Autosub6000, has been put through its paces during an extremely successful engineering trials cruise on the RRS Discovery, 27 September to 17 October 2009.

Autosub6000 was working in regions of the Iberian Abyssal Plain in the North Atlantic deeper than 5600 metres and also around the steep and rugged terrain of the Casablanca Seamount, between Madeira and Morocco. The vehicle was designed and constructed by engineers at the Underwater Systems Laboratory in the National Oceanography Centre, Southampton.

Highlights:

- Operating at 5600 metres depth. Very few (if any) AUVs have ever operated autonomously at this depth.

- Survey at 3 metre altitude - paving the way for deep ocean photographic surveys.

- Terrain following at 10 metre altitude over very rough relief.
Testing improved fault detection software so that the AUV can recover from hardware faults.

- Testing of recently fitted magnetometer, turbidity and precision salinity sensors.

One of the main goals of the Autosub6000 engineering trials was the demonstration of the accessibility of deep ocean regions approaching the 6000 metre design depth limit. On 3 October 2009, the AUV descended and reached it's pre-programmed target depth of 5525 metres in 1.5 hours. At this point, a navigation update procedure was undertaken to update and correct for the Autosub6000's drift which was incurred as it descended through the moving water column. After 2.5 hours from deployment, the Autosub6000 was on station at a depth of 5600 metres, positioned to accuracies of a few metres, and ready to start collecting scientific data.

Autosub6000 has been enhanced with a forward-looking vertically scanning obstacle-detection sonar and improved terrain-following control software, giving the AUV the ability to operate safely, closer to the seabed. This was demonstrated at low altitudes in the steep and rugged slopes of the Casablanca Seamount with a 10 metre altitude run starting at 3000 metres depth and rising up to 700 metres depth over a course of 7.5 kilometres. The ability of Autosub6000 to perform low-altitude colour photographic surveys was demonstrated on the more level summit regions of the Casablanca Seamount with low-speed surveys at altitudes of as low as 3 metres.

Steve McPhail, Autosub6000 project leader, said, "Apart from the correct functioning of the vehicle during the trials at extreme depths, what particularly pleased me was that we have now developed the control and obstacle avoidance systems such that we have the confidence to send the AUV into a hostile and rugged terrain. This will lead to more challenging and interesting scientific campaigns in the future."

Autosub6000 is now being prepared for a cruise on board the RRS James Cook to the Caribbean Sea near the Cayman Islands in April 2010, where it will be used in conjunction with the remotely operated vehicle Isis to search for deep hydrothermal vents.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Autosub6000 project leader:
Steve McPhail: s.mcphail@noc.soton.ac.uk (Tel. 023 8059 6370).
Images are available from the NOCS Press Office (Tel. 023 8059 6100).
The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>