Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autosub6000 dives to depth of 3.5 miles

30.10.2009
The United Kingdom's deepest diving Autonomous Underwater Vehicle (AUV), Autosub6000, has been put through its paces during an extremely successful engineering trials cruise on the RRS Discovery, 27 September to 17 October 2009.

Autosub6000 was working in regions of the Iberian Abyssal Plain in the North Atlantic deeper than 5600 metres and also around the steep and rugged terrain of the Casablanca Seamount, between Madeira and Morocco. The vehicle was designed and constructed by engineers at the Underwater Systems Laboratory in the National Oceanography Centre, Southampton.

Highlights:

- Operating at 5600 metres depth. Very few (if any) AUVs have ever operated autonomously at this depth.

- Survey at 3 metre altitude - paving the way for deep ocean photographic surveys.

- Terrain following at 10 metre altitude over very rough relief.
Testing improved fault detection software so that the AUV can recover from hardware faults.

- Testing of recently fitted magnetometer, turbidity and precision salinity sensors.

One of the main goals of the Autosub6000 engineering trials was the demonstration of the accessibility of deep ocean regions approaching the 6000 metre design depth limit. On 3 October 2009, the AUV descended and reached it's pre-programmed target depth of 5525 metres in 1.5 hours. At this point, a navigation update procedure was undertaken to update and correct for the Autosub6000's drift which was incurred as it descended through the moving water column. After 2.5 hours from deployment, the Autosub6000 was on station at a depth of 5600 metres, positioned to accuracies of a few metres, and ready to start collecting scientific data.

Autosub6000 has been enhanced with a forward-looking vertically scanning obstacle-detection sonar and improved terrain-following control software, giving the AUV the ability to operate safely, closer to the seabed. This was demonstrated at low altitudes in the steep and rugged slopes of the Casablanca Seamount with a 10 metre altitude run starting at 3000 metres depth and rising up to 700 metres depth over a course of 7.5 kilometres. The ability of Autosub6000 to perform low-altitude colour photographic surveys was demonstrated on the more level summit regions of the Casablanca Seamount with low-speed surveys at altitudes of as low as 3 metres.

Steve McPhail, Autosub6000 project leader, said, "Apart from the correct functioning of the vehicle during the trials at extreme depths, what particularly pleased me was that we have now developed the control and obstacle avoidance systems such that we have the confidence to send the AUV into a hostile and rugged terrain. This will lead to more challenging and interesting scientific campaigns in the future."

Autosub6000 is now being prepared for a cruise on board the RRS James Cook to the Caribbean Sea near the Cayman Islands in April 2010, where it will be used in conjunction with the remotely operated vehicle Isis to search for deep hydrothermal vents.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Autosub6000 project leader:
Steve McPhail: s.mcphail@noc.soton.ac.uk (Tel. 023 8059 6370).
Images are available from the NOCS Press Office (Tel. 023 8059 6100).
The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>