Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian researchers discover oldest evidence of life on Earth

02.09.2016

Australian researchers have found fossils dating back 3.7 billion years in a remote area of Greenland, demonstrating that life emerged rapidly during the planet’s early history.

Australian researchers have found the world’s oldest fossils in a remote area of Greenland, demonstrating that life emerged rapidly during the planet’s early history.


A 3.7 billion year old rock from Greenland containing a stromatolite

University of Wollongong


L-R: Team members Vickie Bennett, Allen Nutman and Clark Friend examine the rocks in Greenland where ...

University of Wollongong

The team, which includes UNSW Professor Martin Van Kranendonk, discovered the 3.7 billion-year-old fossil stromatolites – formations created by communities of ancient microbes – in the world’s oldest rocks in the Isua Greenstone Belt along the edge of Greenland’s Ice Cap.

The stromatolites, which were exposed by the recent melting of a perennial snow patch, are 220 million years older than stromatolites from the Pilbara region of Western Australia which were previously regarded as the world’s oldest.

... more about:
»Astrobiology »Australian »Earth »Mars »life on Mars

The research team, led by Professor Allen Nutman of the University of Wollongong, says the discovery not only provides greater insight into the early diversity of life on Earth; it could also have implications for our understanding of life on Mars.

The findings are published today in the journal Nature.

“This discovery represents a new benchmark for the oldest preserved evidence of life on Earth,” says Professor Van Kranendonk, Director of the Australian Centre for Astrobiology in the UNSW School of Biological, Earth and Environmental Sciences.

“The structures and geochemistry from the newly exposed outcrops in Greenland display all of the features used in younger rocks to argue for a biological origin.

“It points to a rapid emergence of life on Earth and supports the search for life in similarly ancient rocks on Mars, which was a damp environment 3.7 billion years ago,” he says.

For much of Earth’s history, life was just single cells. Stromatolite fossils are layered mounds of carbonate constructed by these communities of microbes as they grow.

The 1 to 4-centimetre high Isua stromatolites were laid down in a shallow sea, providing the first evidence of an environment in which early life thrived. Their discovery pushes back the fossil record to near the start of the Earth’s geological record.

“The significance of stromatolites is that not only do they provide obvious evidence of ancient life that is visible with the naked eye, but that they are complex ecosystems,” says Professor Nutman, who is also an Associate Member of the Australian Centre for Astrobiology at UNSW.

“This indicates that as long as 3.7 billion years ago microbial life was already diverse. This diversity shows that life emerged within the first few hundred millions years of Earth’s existence, which is in keeping with biologists’ calculations showing the great antiquity of life’s genetic code,” he says.

Co-lead investigator Associate Professor Vickie Bennett from the Australian National University says the study provides a new perspective on the history of the Earth.

“This discovery turns the study of planetary habitability on its head,” she says. “Rather than speculating about potential early environments, for the first time we have rocks that we know record the conditions and environments that sustained early life. Our research will provide new insights into chemical cycles and rock-water-microbe interactions on a young planet.”

Professor Martin Van Kranendonk adds: “UNSW research into early life on Earth continues through the Australian Centre for Astrobiology, which integrates knowledge from early Earth with modern microbial systems to better understand where to explore for life on Mars, in the rest of the Solar System, and beyond.”

Several lines of evidence, such as details of the chemistry, sedimentary structures and minerals in the rocks, together indicate that the stromatolites were formed by live organisms. Previous genetic molecular clock studies suggest life originated on Earth more than 4 billion years ago.

The investigation, conducted by the Australian science team in collaboration with a UK partner, was funded by a grant from the Australian Research Council. The team also includes Professor Allan Chivas from the University of Wollongong.

Further information

Institut Ranke-Heinemann / Australisch-Neuseeländischer Hochschulverbund
Pressestelle Friedrichstr. 95

10117 Berlin
Email: berlin@ranke-heinemann.de

Tel.: 030-20 96 29 593

or

Professor Martin Van Kranendonk
UNSW Science
m.vankranendonk@unsw.edu.au

Professor Allen Nutman
University of Wollongong
anutman@uow.edu.au

Weitere Informationen:

http://www.ranke-heinemann.de
http://www.ranke-heinemann.at
http://www.ranke-heinemann.tv

Sabine Ranke-Heinemann | idw - Informationsdienst Wissenschaft

Further reports about: Astrobiology Australian Earth Mars life on Mars

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>